Computer Science 136
Spring 1997
Professor Bruce

Final Examination
May 26, 1997

Question Points Score

10
16
14
10

6
10
20

N QN U AW =

TOTAL 86

Your name (Please print)

I have neither given nor received aid on this examination.

1.

In your second version of the Josephus problem, you implemented a class,
DblyCircularList, representing a doubly-linked circular list. Please write a
method for that class to delete the last element in the list.

You may assume that doubly-linked nodes have the following methods:
public DoublyLinkedListElement next()
// post: returns the element that follows this

public DoublyLinkedListElement previous/()
// post: returns element that precedes this

public Object value()
// post: returns value stored here

public void setNext(DoublyLinkedListElement next)
// post: establishes a new reference to the next value

public void setPrevious(DoublyLinkedListElement prev)
// post: establishes a new reference to a prev value

public void setValue(Object value)
// post: sets a new value for this object

The DblyCircularList class has the following instance variables:
protected DoublyLinkedListElement head;
protected int count;

Be sure to take care of special cases:

public Object removeFromTail ()
// pre: list is not empty

// post: removes value from tail of list

2. A simple implementation of a set can be given using a Collection class to hold the
elements:

public interface Collection extends Container {
public boolean contains(Object value);
public void add(Object value);
public Object remove(Object value);
public Iterator elements();

An extract of the code for the class is given below:

public class Set {
protected Collection setRep;

public Set()
// post: constructs a new, empty set
{

)

?

)

setRep = new ? ;
// Replace ???? by a specific class constructor

}

public boolean isEmpty ()
// post: returns true iff set is empty

public void add(Object e) {
// pre: e is non-null object
// post: adds element e to interface
if (!setRep.contains(e)) setRep.add(e);

}

public Object remove(Object e) {

// pre: e is non-null object

// post: e is removed from set, value returned
setRep.remove(e);

}

public boolean contains(Object e)
// pre: e is non-null
// post: returns true iff e is in set

public Iterator elements(){
// post: returns iterator to traverse the elts of set
return setRep.elements();

}

a. Please write Java code to implement the following method:

public Object intersection(Set other)
// pre: other is non-null reference to set
// post: returns set intersection between this & other

b. Suppose we replace the ??7?? in the constructor by SinglyLinkedList (). What
is the complexity of your implementation of intersection above if the receiver has n
elements and other has m elements?

c. Suppose we replace the ?7??? in the constructor by HashTable (N), for N an integer.
If the load factor of the table is very low, then what will the average complexity of
your implementation of intersection be (in terms of m, n, and N)?

d. Suppose the set is restricted to contain elements which are Comparable. If we replace
the 77?7 in the constructor by SplayTree (), then what will the average complexity
of your implementation of intersection be?

3a. Describe briefly the division method for hash coding. Which kind of table sizes work
best with this method?

b. What is a hash clash (or collision)?

c. Define briefly:
1. primary clustering

ii. secondary clustering

d. Describe briefly the open addressing and chaining methods of dealing with hash
clashes.

e. Define the load factor, o, of a hash table.

f. Suppose we use open addressing to deal with hash clashes. One of my texts describes
double hashing as "one of the best methods available for open addressing." Please
briefly explain double hashing and discuss its advantages and disadvantages over
linear and quadratic probing. Be sure to compare them with respect to both primary
and secondary clustering.

4. Concurrency and threads:
a. What is a thread and what does it have to do with concurrency?

b. Please explain what the impact of sending the following messages to a thread would
be:

i. start()

ii. sleep(50);

c. Suppose an object, testObj, with int field value, has methods,

public void set(int n){
value = n;

}

public int get(){
return value;

}

public void write(int n){
set(n);
int temp = get();
System.out.println("The value of n is "+temp);

Normally, executing the wr ite method results in printing the value of n.

(1) What Java language construct can we use to ensure that only one thread is
executing in these three methods at a time? Show how it would be used with these
methods.

(i1) What might happen if two threads could be executing in these methods at the
same time? Describe a scenario in which write would not behave the same way as
if only one thread were allowed in it at a time.

5. Consider the following code fragment where infile is a variable of type
DataInputStream which has been successfully created (and attached to an
existing file).

try
{
while (true)
{
int number = infile.readInt();
System.out.println("The number is "+number);
}

} catch (EOFException eofEx) {
System.out.println("EOF exception");

} catch (IOException ioEX)({
System.out.println("IO Exception");

}
System.out.println("End of Code");

a. What is printed out by the code fragment if 24, 37, and 16 were originally written to
the file (when created as a DataOutputStream)?

b. What is printed out by the code fragment if 24, 33, "Hello", 18, and 29 were
originally written to the file?

6. Java and object-oriented languages:
a. What is the difference between an interface and an abstract class in Java?

b. Please explain the life cycle of an applet in terms of the three methods init (),
start (), and action(Event evt).

c. Please explain the restrictions Java applies to applets that do not apply to applications.
Why are those restrictions there?

d. Question 1 of this exam involves the class DblyCircularList. Please write the
complete Java code for a subclass of that class which includes a method
printCount () which prints the current value of the field count.

7. A bipartite graph is a special graph in which the vertices are divided into two sets,
and the only edges are between vertices in different sets. For example we can images
a graph with vertices representing applicants and jobs. Two vertices will be
connected if one of them represents an applicant and the other a job for which that
person is qualified. The following graph represents such a graph in which, for
example, only applicants Al, A4, and A5 are qualified for job J1.

0y
DZANN
®

The program should allow the user to specify one of the following options:

1. Insert (a) a new applicant or (b) a new job position into the graph.

2. Remove (a) an existing applicant or (b) job position from the graph.

3. Add the fact that a particular applicant is qualified for a particular job.

4. List (on the screen) all persons qualified for a specified job position.

5. List (on the screen) all job positions for which a specified person is qualified.
You may assume that all applicant and job information is held in objects of class
Applicant and Job, each of which includes methods for ordering, equals, and
finding hash codes. Similarly, you may presume that a class Edge is available with
methods to return the applicant and job involved. We will presume that the interface
BipartiteIntface specifies the names and behavior of all of the methods. In
this problem we will discuss two possible implementations of this interface.

a. In this subproblem you will implement parts of a class implementing a bipartite graph
in a way analogous to that for an adjacency matrix. Be sure to use the fact that no
edges go between applicants or jobs to save space!

1. Draw a picture corresponding to the graph above using the representation you
design.

ii. Write the class header, all field definitions necessary to hold all of the associated
information, and a class constructor which takes parameters representing the
maximum number of jobs, nJobs, and applicants, nApps, in use at once, and creates
an empty graph. You may omit the "freelist" of unused rows and/or columns for
simplicity.

