
Chapter 10

Graphical User Interfaces in Java

Users typically interact with computers via graphical user interfaces or GUI ’s. These interfaces
provide the user with multiple windows on the screen and support the use of a mouse to click on
buttons, drag items around, pull down and select items from menus, select text fields in which
to type responses, scroll through windows, and perform many other operations. GUI components
(sometimes called “widgets”) are items like buttons and menus that can be added to the user
interface to provide a way for users to interact with a program.

So far we have not been able to program using these components. We can draw geometric
objects on a canvas and interact with programs using mouse actions, but we haven’t yet seen how
to create and interact with GUI components in the way that one does with most programs running
on personal computers. In this chapter we will introduce you to techniques for programming a
graphical user interface with your Java programs.

Java provides two libraries to assist in the programming of GUI interfaces, AWT, standing
for Abstract Windowing Toolkit, and Swing. Swing is intended to replace AWT, Java’s original
windowing toolkit. In this chapter we will focus on Swing. However, many aspects of GUI pro-
gramming still depend on AWT classes, so we will use classes from both of these libraries as well
as libraries providing support for event handling.

A thorough discussion of the Swing package and how to use it could fill an entire book. In this
chapter we will introduce some of the basic features of the package. More detailed information
on the package should be available on your local computer system or on-line at the Java web site:
http://java.sun.com/apis.html.

10.1 Text Fields

As our first of example of using GUI components we introduce the class JTextField from Java’s
Swing package. An object from the class JTextField displays a single line of user-updatable text.

A JTextField object differs from objects of objectdraw’s Text class in two important ways.
First, while only the programmer can change the contents of a Text object, a user may change the
contents of a JTextField object by clicking in the field and typing new text. Thus JTextFields
are very useful for obtaining user input.

Another important difference between the two is the way objects are placed in a window. A
Text object can be placed at any location desired on a canvas. A JTextField must be placed in
a window using a layout manager.

237

Figure 10.2 contains the code for a class that displays a window with a text field at the top of
the window and a canvas filling the rest of the window. Each time the user clicks on the canvas, the
program generates a Text object with the contents of the text field. Figure 10.1 displays a window
that shows the operation of this program.

Figure 10.1: JTextField in window.

10.1.1 Creating a Text Field

Text fields are created using the built-in JTextField class that is part of Java’s Swing package.
You can use the JTextField class like any other class. For example, the TextController class in
Figure 10.2 contains the instance variable declaration:

private JTextField input;

The constructor for JTextField that we will use takes a String parameter specifying the initial
contents appearing in the text field. In our example, the component is created in the begin method
with the statement:

input = new JTextField("Enter text here");

If you do not want the text field to contain any text initially, you may also use a parameterless
constructor, as in:

input = new JTextField();

To use the JTextField class, you must import it from the Swing package into any classes that
use it. Importing information from a package makes the names in the package accessible to the
class to which it is being imported.

238

import objectdraw.*;
import java.awt.*;
import javax.swing.*;

public class TextController extends WindowController {
private JTextField input;

public void begin() {
// create text field

input = new JTextField("Enter text here");

// Add text field to content pane of window

Container contentPane = getContentPane();
contentPane.add(input, BorderLayout.NORTH);
contentPane.validate();

}

// Add new text item where clicked.

// Get contents from text field

public void onMouseClick(Location point){
new Text(input.getText(), point, canvas);

}
}

Figure 10.2: TextController class using JTextField

239

We have two choices in importing classes from a package. We may import only the names of
the classes we need or we may import all of the names defined in that package. We import a single
name in an import declaration by listing the name with the package’s name prefixed to it. For
example, we import the name of the JTextField class from the Swing package by writing:

import javax.swing.JTextField;

Notice that the full name of the Swing package is javax.swing. Alternatively, we can import all
of the names in the package by simply writing:

import javax.swing.*;

The “*” at the end indicates that all names from the package javax.swing should be imported.
Import statements for a class or interface definition should be placed before the first line of the

class or interface declaration, in the same place we write import objectdraw.*. The relative
ordering of import statements does not matter in Java.

While we normally omit import statements in our code examples, we have included them in
Figure 10.2 and many of the other examples in this chapter in order to make it clear where they
belong. In the example we have imported all of the names in packages objectdraw, java.awt, and
javax.swing.

10.1.2 Installing a Text Field in a Window

While the construction of a Text object makes it appear immediately on the canvas used as a
parameter, creating a JTextField object does not make it appear in the window. To make a
component appear in a window, we must add it to the “content pane” of the window.

We can obtain the content pane of a class extending WindowController by evaluating the
built-in method getContentPane(). The statement

Container contentPane = getContentPane();

in the begin method of Figure 10.2 stores the content pane of the window in the variable contentPane,
which has type Container. A Container object can hold GUI components like text fields, but-
tons, and menus. The class Container comes from Java’s AWT package. To use it we must import
java.awt.Container or java.awt.*, as we did above.

Every Container object created by Java comes with a layout manager. The layout manager
takes care of arranging components in the window according to the instructions of the programmer.
Content panes associated with classes extending WindowController come with a BorderLayout
layout manager as the default.

Figure 10.3 shows how components can fit into the different parts of a window using BorderLayout.
Components may be installed in the center, north, south, east, or west position in a Container
with this layout manager. Normally, we will avoid adding to the center of the contents pane of a
window associated with an extension of WindowController because the canvas is already installed
there.

If you wish to create an applet that does not have the canvas already installed in the center
position, you may define your class to extend Controller, rather than WindowController. The
class Controller was included in the objectdraw library precisely for those situations where the

240

Figure 10.3: Layout of a window using BorderLayout layout manager.

canvas was not needed. Of course classes that extend Controller no longer suppose the mouse-
handling methods like onMouseClick because those methods were called in response to mouse
actions on the canvas.

The method for adding a component to a container that uses BorderLayout is

someContainer.add(aComponent, position);

where someContainer has type Container and position is one of the following five constants:

• BorderLayout.NORTH,

• BorderLayout.EAST,

• BorderLayout.SOUTH,

• BorderLayout.WEST, or

• BorderLayout.CENTER.

For example, the input text field is added to the top edge of the window in the begin method
when the following statement is executed:

contentPane.add(input, BorderLayout.NORTH);

When a text field is added in the north or south positions in a Container that uses the
BorderLayout layout manager, the text field will be stretched to fill the entire width of the window.
If it is added to the east or west, it will be stretched vertically to reach from the top of the south
item to the bottom of the north item. Items added to the center stretch to fill all space between the
north, east, south, and west components. We will learn later how to use panels in Java to provide
more control over the display of GUI components, but we postpone that discussion for now.

The last thing you should do after adding components to a container is to send the message
validate() to that container. While most of the time this will have no effect, many times it
is necessary to get the system to recompute the size and layout of all of the components in the
container. If you leave this off, components might not be displayed properly.

241

10.1.3 Getting Information from a Text Field

The class TextController creates a new Text object on the canvas every time the user clicks
the mouse on the canvas. The string displayed in the new Text object is obtained from input,
an object of type JTextField. The current contents of a text field are obtained by sending it a
getText message, as is shown in the onMouseClick method. It is also possible to send a text field
a setText message to reset the contents of the field.

In summary, a text field can be a useful way of getting text input from a user into a program.
To use a text field you must create it and then add it to the desired location in the window. The
getText method can be used to retrieve the contents of a text field.

Exercise 10.1.1 Write a class called TextMimic that places a text field on the bottom of the
window. When the mouse is clicked on the canvas, the program should display the contents of the
text field as a Text object at the location the mouse was clicked. For example, if the text field showed
“Hello world.” and the mouse was clicked at the location (100, 100), then the program would display
a Text object at the location (100, 100) that read “Hello world.”

10.2 Buttons and Events in Java

In the previous section we showed how to create, install, and get the contents of a JTextField.
In this section, we show how to use buttons in Java. Buttons require slightly more programming
effort than text fields because we want clicks on buttons to trigger program actions. We explain
how to accomplish this using Java events and event-handling methods.

As a simple example of the use of a button in a Java program, we will modify the TextController
class from the previous section so that the canvas is erased whenever a button is pressed. The new
TextButtonController class is shown in Figure 10.4.

10.2.1 Creating and Installing Buttons

Buttons are represented in the Swing package by the class JButton. Buttons may be created and
installed in the same way as text fields. Because the button is only referenced in the begin method
of Figure 10.4, it can be declared as a local variable:

JButton clearButton = new JButton("Clear Canvas");

The constructor takes a String parameter representing the label that appears on the button. As
with a text field, the button must also be added to the content pane of the window. This time we
add it to the south part of the window:

contentPane.add(clearButton, BorderLayout.SOUTH);

10.2.2 Handling Events

We already know that when the user clicks on the canvas, the code in the onMouseClick method
is executed. When a user clicks on a button created from the class JButton, however, the
onMouseClick method is not executed. Instead, the operating system begins executing a method,
actionPerformed, that is designed to handle button clicks.

242

import objectdraw.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TextButtonController extends WindowController
implements ActionListener {

private JTextField input;

public void begin() {
// create text field and button

input = new JTextField("Enter text here");
JButton clearButton = new JButton("Clear Canvas");

// Add text field and button to content pane of window

Container contentPane = getContentPane();
contentPane.add(input, BorderLayout.NORTH);
contentPane.add(clearButton,BorderLayout.SOUTH);
contentPane.validate();

// Set this class to respond to button clicks

clearButton.addActionListener(this);
}

// Add new text item where clicked.

// Get contents from text field

public void onMouseClick(Location point){
new Text(input.getText(), point, canvas);

}

public void actionPerformed(ActionEvent evt) {
canvas.clear();

}
}

Figure 10.4: TextButtonController class using JTextField

243

To understand how this works, let’s back up for a minute to get a better understanding of how
Java programs respond to user actions. Java supports a style of programming known as event-
driven programming. We have been programming in this style with our programs that react to
mouse actions. For example, whenever the user clicks the mouse button, it generates an event that
results in the onMouseClick method being executed by the computer.

A button generates an event of type ActionEvent whenever the user clicks on it. This in turn re-
sults in the execution of an actionPerformed method. For example, the method actionPerformed
in TextButtonController is executed each time the button is pressed. In this example it simply
erases the canvas.

Just as the onMouseClick method is provided with a parameter representing the location
where the mouse was clicked, the actionPerformed method is provided with a parameter of type
ActionEvent that contains information about the object that triggered the event. For example,
evt.getSource() returns the GUI component that triggered an event, evt. While we don’t need
that information for this example, we will present examples later that do use that information.

There is one extra step that must be taken when handling events in standard Java. In order
for a program to respond to an event generated by a GUI component, we must designate one or
more objects to be notified when an event is generated by that component.

An object that is to be informed when an event is generated by a component is said to be an
event listener. Different kinds of events require different types of listeners. The only requirement for
an object to be a listener for a particular kind of event is that it promise to provide an appropriate
method to be triggered when the event occurs.

Pressing on a button triggers the execution of an actionPerformed method. Thus any listener
for a button must implement the method:

public void actionPerformed(ActionEvent evt);

We associate a listener with a button by sending the button an addActionListener message,
such as:

clearButton.addActionListener(actionListenerObject);

After this code has been executed, actionListenerObject is registered as a listener for clearButton,
and its actionPerformed method is executed each time the button is pressed.

What is the type of the parameter of addActionListener? As we have seen, we only re-
quire that it provide an actionPerformed method. The Java AWT package contains an interface
ActionListener whose only method declaration is the actionPerformed method. Thus any object
that implements the ActionListener interface can be used as a parameter for addActionListener.

While we could design a class that creates objects that are only used as listeners, for simplicity
we will generally handle interaction with GUI components similarly to the way in which we have
been handling mouse actions. That is, we will have the window class itself contain the method that
responds when the user interacts with a GUI object. Thus we write

clearButton.addActionListener(this);

in the begin method of TextButtonController. That indicates that the TextButtonController
object will do the listening. In order for this to be legal, the class TextButtonController
must implement the interface ActionListener and include a method actionPerformed. The
actionPerformed method in Figure 10.4 erases the canvas.

244

Both ActionEvent and ActionListener are in the java.awt.event package; any program
using them must include the following import statement:

import java.awt.event.*;

Warning! Do not make the mistake of trying to handle a button click by writing an onMouseClick

method. That method is only executed when the user clicks on the canvas, not on a GUI component.
The onMouseClick method handles clicks on the canvas, while actionPerformed handles clicks on
a button.

Also don’t forget to add a listener to buttons in your program. If you leave that line out of your
class the system won’t complain, but will just ignore all clicks on the button.

10.3 Checklist for Using GUI Components in a Program

We have now seen examples using both text fields and buttons. With that background, we can
now summarize the actions necessary to create and use a GUI component in a class extending
WindowController, where that class also serves as the listener for the component.

1. Create the GUI component:

input = new JTextField("enter text here");
clearButton = new JButton("Clear Canvas");

2. Add the component to the content pane of the WindowController extension and
validate it:

Container contentPane = getContentPane();
contentPane.add(input, BorderLayout.NORTH);
contentPane.add(clearButton,BorderLayout.SOUTH);
contentPane.validate();

3. If a WindowController extension is to respond to events generated by the compo-
nent,

(a) Add this as a listener for the component:

clearButton.addActionListener (this);

(b) Add a declaration that the WindowController extension implements the ap-
propriate listener interface:

public class TextButtonController extends WindowController
implements ActionListener {

(c) Add to the WindowController extension the event-handling method promised
by the listener interface:

245

public void actionPerformed(ActionEvent evt) {
...

}

While different kinds of GUI components generate different kinds of events requiring different
event-handling methods and listener types, the checklist above summarizes the steps a programmer
must take in order to install and use any kind of GUI component. Always make sure that you have
taken care of each of these requirements when using GUI components.

Exercise 10.3.1 Write a class called ClickMe that places a button on the bottom of the window.
The button should be labeled “Click Me.” When the button is clicked, a Text object should display
the number of times the user has clicked. For example, after the user has clicked twice, the canvas
should read, “You have clicked 2 times.” Be sure to follow steps 1 through 3 to add the button.

Exercise 10.3.2 Write a class called RandomCircles that places a button on the top of the window.
The button should be labeled ”Draw a circle.” When the button is clicked, the program should draw
a circle of a random size (between 10 and 100 pixels in diameter) at a random location on the
canvas. Be sure to follow steps 1 through 3 to add the button.

10.4 Combo Boxes

A popular GUI component used in Java programs is a pop-up menu, called a combo box in Java’s
Swing package. In Figure 10.5 we introduce a slight variant of the FallingBall class from Figure
8.3 in Chapter 8. In this new version we have added a new method setSpeed that allows us to
change how far the ball falls between pauses. Using a large value for the integer parameter makes
the ball appear to move faster, while a small value makes it appear to move slower.

We will write a class extending WindowController to handle user interactions with the ball.
As with the previous case, when the user clicks on the canvas, the program will create a ball that
will begin falling. However, we will also introduce a combo box (menu) to allow the user to change
the speed at which the ball will fall. This will be accomplished in the class MenuBallController
in Figure 10.7. The combo box will include three alternatives, “Slow”, “Medium”, and “Fast.” A
picture showing the window with the combo box at the bottom is given in Figure 10.6.

Let’s follow through the checklist from the previous section to make sure that we do every-
thing necessary to install properly and use a combo box GUI component generated from the class
JComboBox. As we do this, we will also highlight those places where combo boxes are handled
differently from buttons or text fields.

1. Create the combo box: Combo boxes are a bit more complicated than buttons in that we
must add the selection options to the combo box once it has been constructed. The relevant
code in the class is:

speedChoice = new JComboBox();

speedChoice.addItem ("Slow");
speedChoice.addItem ("Medium");
speedChoice.addItem ("Fast");

246

public class FallingBall extends ActiveObject {
// constants omitted

private FilledOval ball; // Image of ball as circle

private int speed; // current speed of ball

// Draw ball at location and w/speed given in parameters

public FallingBall(Location ballLocation, int initSpeed,
DrawingCanvas canvas) {

ball = new FilledOval(ballLocation, BALLSIZE, BALLSIZE, canvas);
speed = initSpeed
start();

}

// Move ball down until off of canvas

public void run() {
while (ball.getY() < canvas.getHeight()) {

ball.move(0, speed);
pause(DELAY_TIME);

}
ball.removeFromCanvas();

}

// reset speed of ball

public void setSpeed(int newSpeed) {
speed = newSpeed;

}
}

Figure 10.5: FallingBall class

247

Figure 10.6: Menu created by MenuBallController.

speedChoice.setSelectedItem("Medium");

The first line creates the combo box and associates it with variable speedChoice. The next
three lines use the addItem method to add the items “Slow”, “Medium”, and “Fast” to the
combo box.

Items appear on the pop-up menu of the combo box in the order that they are added, with
the first item added showing when the combo box is first displayed. Thus “Slow” would
normally be displayed when the combo box first appears. If we want to have a different item
showing initially, we can send either a setSelectedIndex or a setSelectedItem message to
the combo box.

With setSelectedIndex, we must provide an int parameter that specifies the index (i.e.,
the number) of the item that is to be displayed. Indices in Java always start with 0, so in our
speedChoice example, adding the statement

speedChoice.setSelectedIndex(1);

would result in the item “Medium” being displayed, as in Figure 10.6.

If, as in the actual code, the setSelectedItem method is used, then the parameter should
be the actual item to be selected. Thus executing the statement

speedChoice.setSelectedItem("Medium");

248

import objectdraw.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MenuBallController extends WindowController
implements ActionListener {

// constants omitted
private FallingBall droppedBall; // the falling ball

private JComboBox speedChoice; // Combo box to select ball speed
private int speed; // Current speed setting

// display instructions and combo box
public void begin() {

new Text("Click to make a falling ball...", INSTR_LOCATION, canvas);

speed = SLOW_SPEED;

speedChoice = new JComboBox(); //Create combo box

speedChoice.addItem ("Slow"); // Add 3 entries
speedChoice.addItem ("Medium");
speedChoice.addItem ("Fast");
speedChoice.setSelectedItem("Medium"); // Display "Medium" initially

speedChoice.addActionListener (this); // this class is listener

Container contentPane = getContentPane(); // Add combo box to south
contentPane.add(speedChoice, BorderLayout.SOUTH);
contentPane.validate();

}

// make a new ball when the player clicks
public void onMouseClick(Location point) {

droppedBall = new FallingBall(point, speed, canvas);
}

// reset ball speed from combo box setting
public void actionPerformed(ActionEvent evt) {

Object newLevel = speedChoice.getSelectedItem ();
if (newLevel.equals("Slow")) {

speed = SLOW_SPEED;
} else if (newLevel.equals("Medium")) {

speed = MEDIUM_SPEED;
} else if (newLevel.equals("Fast")) {

speed = FAST_SPEED;
}
if (droppedBall != null) {

droppedBall.setSpeed(speed);
}

}
}

Figure 10.7: MenuBallController class
249

also results in the item “Medium” being displayed.

2. Add the combo box to the content pane of the WindowController extension and
validate it:

Container contentPane = getContentPane();
contentPane.add(speedChoice, BorderLayout.SOUTH);
contentPane.validate();

3. Because we need a listener:

(a) Add this as a listener for the combo box: Like buttons, combo boxes require
a class that implements the ActionListener interface to handle the events generated.
The method addActionListener is used to add a listener

speedChoice.addActionListener(this);

(b) Add a declaration that the WindowController extension implements the appro-
priate listener interface: ActionListener is the appropriate interface for a combo
box:

public class MenuBallController extends WindowController
implements ActionListener {

(c) Add to the WindowController extension the event-handling method promised
by the listener interface: The ActionListener interface includes the method actionPerformed,
which takes a parameter of type ActionEvent:

public void actionPerformed(ActionEvent evt) {
...

}

There is little difference between installing and using a combo box and a button. The body
of the actionPerformed method resets the speed of the last ball dropped as well as balls to be
dropped in the future. To make these changes to the speed, it needs a way to determine the current
setting of a combo box. The class JComboBox provides two methods that return the combo box’s
current setting. The first is getSelectedItem(), which returns the object that the user chose from
the combo box. The other is getSelectedIndex(), which returns the index of the item chosen
(starting from 0 as usual).

In this case, it is reasonable to use getSelectedItem() to return the item selected by the user
from the combo box, storing the value in the variable, newLevel. The method getSelectedItem
has return type Object. Thus the local variable newLevel in itemStateChanged must have type
Object.

————————————————————————————————

Object is a built-in Java class that represents all objects. It includes all values aside
from those belonging to primitive types like int, double, and boolean, and supports
the methods:

250

public boolean equals(Object other);

public String toString();

If not redefined in a class, the method equals returns true if the receiver and the
parameter are the same object. That is, it behaves like “==”. However, it is a good
idea for classes to provide different behavior where appropriate. For example, the
String class has redefined equals so that it returns true if other is a String with the
same sequence of characters as the receiver.

The method toString returns a String representing the object. If not redefined in a
class, it simply returns the name of the type along with an integer. For example, an ob-
ject from class Letters might return Letters@858610 when sent the toString message.
It is again a good idea to redefine this method in classes so that you get back a reason-
able String representation of an object. For example, if you send a toString message
to Color.red, it will return “java.awt.Color[r=255,g=0,b=0]”. Sending toString to a
FramedRect will return a string that provides information about its location, dimen-
sions, and color. Not surprisingly, sending a toString method to an object of type
String returns a copy of the receiver, as it is already a string.

————————————————————————————————

Object is used as the return type of getSelectedItem because any type of object may be
inserted as an item in a combo box. That is, the parameter in method addItem is of type Object.
The actual text displayed for that item in the combo box is the string obtained by sending a
toString message to that object.

Even though we don’t know what kind of object will be returned from getSelectedItem, we can
still use the equals method to compare the value returned from the invocation of getSelectedItem
with the items inserted into the combo box. In our example these are all strings and the comparisons
work as expected.

Exercise 10.4.1 Under what circumstances might droppedBall have the value null in the exe-
cution of the method itemStateChanged?

Exercise 10.4.2 If you click the mouse in the window several times in rapid succession, multiple
balls will be created and will fall toward the bottom of the window. If you use the combo box to
change the speed, only the last ball created will change speed. Explain why.

Exercise 10.4.3 Add a new speed setting, “Very Slow”, as the first entry in the combo box. How-
ever the initial setting should have the ball moving at the “Slow” speed and have the “Slow” item
showing initially on the combo box.

Exercise 10.4.4 Write a class called BoxColor that initially draws a black FilledRect on the
canvas. Add a combo box to the bottom of the window. The combo box should include the items
“red,” “yellow,” “green,” “blue,” and “black.” When a color is chosen from the combo box, the
color of the FilledRect should change appropriately.

251

10.5 Panels and Layout Managers

We now know how to add a text field, a button, or a combo box to a window. However, the buttons
and combo boxes may not look as expected because they are distorted to fill the entire width of
the window.

Another problem is that we often want to insert two or more components in the same part of
the window. For example it may be easier for the user if all of the components provided to control a
program are adjacent. However, if we insert two GUI components, say a combo box and a button,
to the same part of the window (e.g., the south side), the second one will simply, and unfortunately,
appear in place of the first.

In this section we will learn how to solve these problems and make more attractive user interfaces
by using panels and by introducing several different layout managers.

10.5.1 Panels

We begin by solving the following simple problem. Rather than using a combo box to set the speed
of the falling ball, as in the MenuBallController class, we would like to have three buttons to set
the speed to three values.

We could add each button to a different part of the window. For example, we could put one
each on the east, north, and west sides of the window. However, this would both look strange and
be inconvenient for the user. We would rather place all three buttons on the south side of the
window, as shown in Figure 10.8, but, as we just remarked, only one component can be placed in
each of the four available positions in the window.

Figure 10.8: Using a panel to group GUI components.

To help solve problems like this, Swing provides a component called a JPanel. A panel can
contain GUI components just like a window does, but can also serve as a component in the same

252

way as a button or combo box. Panels are typically used to organize the window into collections
of subcomponents. In particular, if we wish to put more than one GUI item in the same part of a
window, we can create a panel, add the GUI components to the panel, and then add the panel to
the window.

We illustrate this in Figure 10.9. In the begin method of the ButtonsBallController class
we create a panel with three buttons that will be inserted at the bottom (i.e., south side) of the
window. Figure 10.8 shows the resulting window with three buttons at the bottom.

A panel uses a different layout manager, FlowLayout, than classes that extend WindowController.
The FlowLayout manager lays out its components from left to right across the panel. If there is
insufficient space to fit all of the components in a single row, new rows are added as necessary.
Notice that each of the buttons in Figure 10.8 is just large enough to display its label, rather than
being stretched to fill up all of the available space.

In Figure 10.9, the second line of the begin method declares and initializes a local variable,
southPanel, to be a JPanel. It is created with a parameterless constructor. The statements,

southPanel.add(fastButton);
southPanel.add(mediumButton);
southPanel.add(slowButton);

add the three buttons to southPanel. Because the buttons are displayed from left to right in the
order they are added, there is no parameter specifying where the button goes in the panel.

Finally, the code:

Container contentPane = getContentPane();
contentPane.add(southPanel, BorderLayout.SOUTH);
contentPane.validate();

adds southPanel to the content pane of the window and then validates the content pane. Because
the window uses BorderLayout, the method call includes the constant BorderLayout.SOUTH, spec-
ifying in which part of the window the panel is inserted.

There is still one problem we must solve. When the user clicks on one of the buttons, the
actionPerformed method of the class is executed because this was declared to be a listener for
each of the three buttons. Inside the method we need to know which button was pressed so that
we can set the speed appropriately. The actionPerformed method is given in Figure 10.10.

We can find the source of an event by sending a getSource message to the event parameter.
We can then compare the source of the event with each of the three buttons to see which was
responsible for the event. The if-else statement in Figure 10.10 compares the source of the event
with the buttons to determine which button was pressed. Once this has been determined, the ball’s
speed can be updated.

Each of Java’s event types supports a getSource method. Thus if you have multiple components
in a program that call the same method to handle events, you can send a getSource message to
the event parameter to determine which component generated the event.

As with the earlier getSelectedItem method, the getSource method returns a value of type
Object. Thus if we save the results of evaluating evt.getSource() in a temporary variable, that
variable must have type Object in order to pass the type-checker. As before, there is no difficulty
in comparing the returned value with other objects, in this case the buttons in the window.

In the same way that we added a panel to the south side of the window, we could add panels
to the north, east, and west sides. With more complex collections of GUI components, one can

253

import objectdraw.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonsBallController extends WindowController
implements ActionListener {

// constants omitted

private FallingBall droppedBall; // the falling ball

private JButton fastButton, // Buttons to control speed

mediumButton,
slowButton;

private int speed; // Current speed setting

// display buttons

public void begin() {
speed = SLOW_SPEED;

JPanel southPanel = new JPanel();

fastButton = new JButton("Fast");
mediumButton = new JButton("Medium");
slowButton = new JButton("Slow");

fastButton.addActionListener(this);
mediumButton.addActionListener(this);
slowButton.addActionListener(this);

southPanel.add(fastButton);
southPanel.add(mediumButton);
southPanel.add(slowButton);

Container contentPane = getContentPane();
contentPane.add(southPanel, BorderLayout.SOUTH);
contentPane.validate();

}

// make a new ball when the player clicks

public void onMouseClick(Location point) {
droppedBall = new FallingBall(point, speed, canvas);

}

Figure 10.9: ButtonsBallController with multiple buttons in a panel. Part 1.

254

// set new speed when the player clicks a button

public void actionPerformed(ActionEvent evt) {
if (evt.getSource() == slowButton) {

speed = SLOW_SPEED;
} else if (evt.getSource() == mediumButton) {

speed = MEDIUM_SPEED;
} else {

speed = FAST_SPEED;
}

if (droppedBall != null) {
droppedBall.setSpeed(speed);

}

}

}

Figure 10.10: ButtonsBallController with multiple buttons in a panel. Part 2.

even add panels which themselves contain other panels. Because our focus here is on programming
rather than the layout of GUI components, we will not explore these possibilities further. However,
we will discuss layout managers briefly in the next section.

Exercise 10.5.1 Suppose we only added one button to southPanel. How would the appearance of
the window differ from that that obtained if we just insert the button directly in the south of the
window?

Exercise 10.5.2 Variable southPanel is declared to be a local variable of the begin method rather
than an instance variable. Why?

Exercise 10.5.3 Write a class called ColorBox that initially draws a black FilledRect on the
canvas. Add four buttons to the bottom of the window using a panel. The buttons should be labeled
“Black,” “Red,” “Yellow,” and “Blue.” When a button is clicked, the color of the FilledRect
should change appropriately.

Exercise 10.5.4 Revise ButtonsBallController to add a combo box to change the color of the
ball. Put the combo box in a new panel in order to have the combo box look better (try it both with
and without the panel to see the difference). Place the panel on the north of the window.

10.5.2 More on Layout Managers

You may be wondering why we don’t just specify the size and location of components in the window,
as we did with graphics objects on the canvas, rather than depending on layout managers and panels
to arrange them. One reason is that the user can resize the window at any time. It would be very
inconvenient to have the user resize the window so that some of the components were no longer

255

visible. Of course, if the user makes the window too small, it is possible that there really is not
room for all of the components. However, the window managers do their best to display all of the
components if that is at all possible. Play around with some of the example programs using GUI
components to see that this is indeed the behavior.

Layout managers determine how GUI components are displayed in a window or panel. Con-
tainer classes like panels and the content panes of windows have default layout managers, but the
programmer can change them before adding components by sending the container a setLayout
message.

The BorderLayout manager, the default layout manager for the content pane of classes extend-
ing WindowController, enables a program to add new components (including panels) to the north,
south, east, or west portions of a container with that layout manager. As stated earlier, the canvas
has already been added to the center of extensions of WindowController, so it is important not to
add a component in the center. If you wish to insert a component in the center, you should extend
Controller, instead.

The FlowLayout manager, which is the default for panels, enables a program to add an unlimited
number of components to a container with that layout manager. These components are laid out
from left to right in the order in which they are added, in the same way that you add new text
with a word processor. If there is not enough room for all of the components, new rows are added,
which are also filled from left to right.

The layout manager of a container, someContainer, can be changed by sending it a setLayout
message. For example, the layout manager for a content pane, contentPane, of a window can be
changed to be FlowLayout by invoking:

contentPane.setLayout(new FlowLayout());

Similarly, the layout manager of somePanel can be set to be BorderLayout by invoking:

somePanel.setLayout(new BorderLayout());

The GridLayout manager can be used to divide a container into equally sized parts. A container
with this layout manager is divided into a group of equally sized cells arranged in a grid. Like the
FlowLayout manager, components are displayed from left to right across each row in the order in
which they are added. The GridLayout manager differs from the FlowLayout manager by forcing
each component to take the same amount of space and by being limited to a predetermined number
of rows and columns.

Suppose southPanel is a panel that we wish to divide into a grid with numRows rows and
numCols columns. This can be accomplished by executing:

southPanel.setLayout(new GridLayout(numRows, numCols));

Suppose we modify the ButtonsBallController class in Figure 10.9 by adding the statement:

southPanel.setLayout(new GridLayout(1, 3));

after the panel has been created, but before any buttons have been added. As before, the three
buttons will be added in order, but this time they are stretched so that each takes up one-third of
the space in the panel. See the picture in Figure 10.11.

There are other layout managers available for Java, but we do not cover them here. Instead we
turn our attention to other GUI components.

256

Figure 10.11: A panel with GridLayout manager to group buttons.

Exercise 10.5.5 How would you change the statement

southPanel.setLayout (new GridLayout(1,3));

used to make the three-button display in Figure 10.11 to make it display three buttons on top of
each other instead of side by side?

10.6 Other GUI Components

In this section we look at some of the other GUI components that you may find useful. We do not
attempt to list all of them, but instead include a representative sample.

10.6.1 Sliders

Sliders can be used to select values in a range. A slider, constructed from class JSlider, consists
of a horizontal or vertical line with a marker that can be dragged to indicate a value between the
maximum and minimum values represented by the slider. Figure 10.12 shows the window for a
program that uses a slider to determine the speed of a falling ball.

Using buttons or a combo box to select speeds can be inconvenient because they only allow us
to choose from a very limited selection of speeds. While we could certainly add more choices to the
combo box, it makes more sense to use a slider to allow the user to smoothly choose from a range
of values. The code for the class SliderBallController can be found in Figure 10.13.

For the most part, the steps in constructing and using a slider are very similar to those required
to construct and use combo boxes and buttons. The only real differences are in the actual con-
structor for the slider, which has a number of parameters to control its appearance and operation,

257

Figure 10.12: A window with a Slider to set the speed.

the listener name, and the method used to get the value represented by the slider. The steps are
as follows:

1. Create the slider: This is taken care of in the first line of the begin method. The constructor
takes four parameters.

• The first parameter is a constant that determines whether the slider is oriented horizon-
tally or vertically. The possible values are JSlider.HORIZONTAL and JSlider.VERTICAL.

• The second and third parameters are used to indicate the minimum and maximum
integer values that can be represented by the slider.

• The fourth parameter sets the initial value of the slider.

The slider in SliderBallController is initialized to be horizontal, representing the range of
values between SLOW SPEED and FAST SPEED, and with initial value set to SLOW SPEED by the
following call of the constructor.

speedSlider = JSlider(JSlider.HORIZONTAL, SLOW_SPEED, FAST_SPEED, SLOW_SPEED
);

2. Add the slider to the content pane of the WindowController extension and validate it.

Container contentPane = getContentPane();
contentPane.add(speedSlider, BorderLayout.SOUTH);
contentPane.validate();

258

import objectdraw.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class SliderBallController extends WindowController
implements ChangeListener {

// constants omitted

private FallingBall droppedBall; // the falling ball

private JSlider speedSlider; // slider to set speed

private int speed = SLOW_SPEED; // speed of ball

// create and install GUI items

public void begin() {
speedSlider = JSlider(JSlider.HORIZONTAL, SLOW_SPEED,

FAST_SPEED, SLOW_SPEED);
speedSlider.addChangeListener (this);

Container contentPane = getContentPane();
contentPane.add(speedSlider, BorderLayout.SOUTH);
contentPane.validate();

}

// make a new ball when the player clicks

public void onMouseClick(Location point) {
droppedBall = new FallingBall(point, speed, canvas);

}

// Get new speed from slider

public void stateChanged(ChangeEvent evt) {
speed = speedSlider.getValue();
if (droppedBall != null) {

droppedBall.setSpeed(speed);
}

}
}

Figure 10.13: SliderBallController class with slider

259

3. Because a listener is required:

(a) Add this as a listener for the slider: Sliders require change listeners, so we write:
speedSlider.addChangeListener(this);

(b) Add a declaration that the WindowController extension implements the ap-
propriate listener interface.
public class SliderBallController extends WindowController

implements ChangeListener {

(c) Add to the WindowController extension the event-handling method promised
by the listener interface. The event-handling method for sliders is stateChanged.
The method can obtain the value represented by the slider by sending a getValue mes-
sage. In the example, the stateChanged method uses that value to reset the speed of the
ball most recently dropped and to remember that speed for balls created subsequently.
public void stateChanged(ChangeEvent evt) {

speed = speedSlider.getValue ();
if (droppedBall != null) {

droppedBall.setSpeed(speed);
}

}

Because the ChangeEvent class is new to Swing, it must be imported from the javax.swing.event
package.

Exercise 10.6.1 Write a class called SquareSizer that uses a slider to determine the size of a
square FilledRect. The FilledRect should initially be 100 pixels by 100 pixels. The slider should
allow the user to change the size of the box to any size between 10 and 300 pixels.

Exercise 10.6.2 Write a class called RectangleSizer that uses two sliders to determine the size
of a FilledRect. One slider should control the length of the box and the other should control the
height of the box. Both sliders should have an upper bound of 300 pixels and a lower bound of 10
pixels. The box should start as a 100 by 100 pixel square.

10.6.2 Labels

One problem with the program above is that it is not at all clear to the user what the slider is for.
We should label it to make it clear to the user what it controls. We might be tempted to use an
object of the class Text to handle this, but Text items may only be put on the canvas. Instead we
would like to have the label next to the slider.

We can add a label to the left of the slider in our example by adding a panel to the bottom of
the window with both the label and the slider. We want the label to show the current speed once
the slider has been adjusted. Figure 10.14 shows the window with this label.

The Java Swing package includes a JLabel class that does exactly what we want. It is a GUI
component that contains a single line of read-only text. It is a passive component and is not

260

Figure 10.14: JSlider with JLabel in JPanel.

designed to respond to user interactions, so no event listener is required. Instead we simply create
the label and install it in the window or panel where we want it to be.

The code for the class LabelBallController is shown in Figure 10.15. The begin method
creates the label, while the stateChanged method changes the label as well as the speed.

There are several constructors for labels. The simplest constructor just takes the string to be
displayed as a parameter.

new JLabel(labelString)

An alternative version allows the user to specify whether the label is left or right justified or
centered:

new JLabel(labelString, justification)

where justification is one of the following constants: JLabel.LEFT, JLabel.RIGHT, or JLabel.CENTER.
We can change the text on the label by sending it a setText message. In the class LabelBallController,

setText is used to update the text in SpeedLabel with the new value of the speed every time the
user changes the slider. Though we do not need it for this example, the JLabel class also supports
a getText method.

Exercise 10.6.3 Revise your RectangleSizer class so that each slider has a corresponding label.
The labels should display the height and width of the box and should change as the dimensions of
the box change.

261

import objectdraw.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class LabelBallController extends WindowController
implements ChangeListener {

...
private JLabel speedLabel;

// create and install GUI items

public void begin() {
JPanel southPanel = new JPanel();

// Create label and slider, and add to southPanel

speedLabel = new JLabel("Use the slider to adjust the speed");
speedSlider = new JSlider(JSlider.HORIZONTAL, SLOW_SPEED,

FAST_SPEED, SLOW_SPEED);
southPanel.add(speedLabel);
southPanel.add(speedSlider);

// add the panel to south of window

Container contentPane = getContentPane();
contentPane.add(southPanel, BorderLayout.SOUTH);
contentPane.validate();

// Add listener only for slider

speedSlider.addChangeListener (this);
}

//Make a new ball when the user clicks

public void onMouseClick(Location point) {
droppedBall = new FallingBall(point, speed, canvas);

}

// Update speed from slider

public void stateChanged(ChangeEvent evt) {
speed = speedSlider.getValue ();
if (droppedBall != null) {

droppedBall.setSpeed(speed);
}
speedLabel.setText("The speed is " + speed);

}
}

Figure 10.15: LabelBallController class with label showing speed
262

10.6.3 JTextField and JTextArea

The first example of this chapter used text fields to hold user input. Text input can be supported
with both the JTextField and JTextArea classes. An object from the class JTextField displays
a single line of user-updatable text, while a JTextArea can display multiple lines of user-updatable
text. Both JTextField and JTextArea components differ from JLabel components by allowing
the user to directly edit the information displayed.

JTextField

The most common constructor for JTextField is the following:

new JTextField(initialContents, numberOfColumns);

where initialContents is a string representing the text shown when the JTextField is first
displayed and numberOfColumns is an int representing the desired width of the text field in terms
of the number of characters of text to be displayed. You should be aware that the specification
of numberOfColumns is an approximation, as the width of characters differs unless you are using
a monospaced font. Moreover, if a text field is inserted in a container using the BorderLayout
manager (as it was in the first example of this chapter), the numberOfColumns parameter is generally
ignored as the text field is stretched or shrunk to fit the space provided.

It is also possible to use one of the following two constructors if you do not wish to specify the
number of columns or the initial contents of the text field:

new JTextField(initialContents);
new JTextField(numberOfColumns);

There are two main ways of associating events with changes to text fields. The simplest is to
display a button next to the text field and have the user click on the button when finished editing
the field. Alternatively, interacting with the text field can generate events.

The user triggers an event from a text field by hitting the enter or return key. For example,
the user might type in a response to a question, hitting the return key at the end of the response.
This generates an ActionEvent just like a button. To use a text field in this way, the user must
add an ActionListener to the field, have the listener implement the ActionListener interface,
and provide an actionPerformed method in the listener.

As noted earlier in the chapter, the actual text displayed in an object of class JTextField
can be obtained by sending it a getText message, which will return the String displayed in the
field. Similarly, the program can display new text in the text field by sending the object a setText
message with the string to be displayed as a parameter.

JTextArea

The JTextArea class is similar to JTextField, but objects of this class can represent multiple lines
of text. A window with a JTextArea is displayed in Figure 10.16.

The most common constructor for this class is:

new JTextArea(initialContents, numRows, numCols);

263

Figure 10.16: JTextArea in window.

where initialContents is a String representing the text shown when the text area is first dis-
played, and numRows and numCols are ints representing the desired number of rows and columns
of text shown in the text area. Because a JTextArea contains multiple lines of data, hitting the
return key will not generate an event. Instead, events triggered by other components may result in
executing code that includes message sends to the text area, thus obtaining the current contents.
Objects from the class JTextArea support methods getText and setText that behave the same
way as those for JTextField. An append message can also be used to add a string to the end of
whatever is currently displayed in the text area.

Often we cannot predict in advance how much information will be contained in a JTextArea.
If more information is contained than will fit in the given space then some information may not be
displayed. So that all of the information can be seen, scrollbars may be associated with a text area
by wrapping the text area with a JScrollPane. The following example illustrates this, where we
have used a constructor for JTextArea that only provides the desired number of rows and columns:

simpleTextArea = new JTextArea(30, 20);
JScrollPane scrollableTextArea = new JScrollPane(simpleTextArea);
somePanel.add(scrollableTextArea);

where simpleTextArea is an instance variable and somePanel has been declared elsewhere as a
JPanel. As before, messages are sent to the text area, not the scroll pane.

10.7 Handling Keystroke and Mouse Events

Keystrokes and mouse actions generate events that can be handled by the appropriate kind of
listener. In this section we discuss how to handle these events and discuss how the objectdraw
package has so far provided support for handling mouse actions.

264

10.7.1 Keystroke Events

We can write Java programs so that every keystroke made by the user generates an event that can
be handled by the program. This can be useful in processing input one character at a time or in
using keyboard input to control actions in games. For example, in a game that controls a rocket
ship one could use the arrow keys on the keyboard to change the direction of movement of the ship
or use the space bar to trigger an action such as shooting a missile or putting up defense shields.

Keyboard events are generally associated with whichever window is topmost on the screen.1

Because the window already exists, we can skip the usual steps of creating and installing a compo-
nent. Instead all we need to do is associate a listener with the keyboard events, and make sure the
listener has the appropriate methods to handle key events.

If, as usual, we let the WindowController extension be the listener, then we need only include
the following statement in the begin method:

this.addKeyListener(this);

While we have normally omitted occurrences of this as the receiver of a message, we include it
here to emphasize that the key events are coming via the active window.

Because of problems and inconsistencies between some applet viewers and web browsers, you
may also have to add a key listener to the canvas:

canvas.addKeyListener(this);

Finally, we need to inform the system that we wish our applet to gain the “focus”. When a
component has the “focus”, the key events are directed to it. We can request the focus by executing:

requestFocusInWindow();

Including all three of these statements in a begin method should ensure that key events are picked
up properly and passed to the listener once the user clicks on the canvas to make sure the applet’s
window has the focus.2

The next step is to declare that the class implements the KeyListener interface:

class KeyBallController ... implements KeyListener { ... }
The KeyListener interface contains three methods:

public void keyTyped(KeyEvent evt)
public void keyPressed(KeyEvent evt)
public void keyReleased(KeyEvent evt)

1Keyboard events can also be associated with other components, such as JTextFields and JTextAreas, but we
won’t deal with that here.

2Unfortunately, on some Windows systems, the focus is not correctly transfered when the user clicks on the
applet’s window. If the above does not work on your system, also add the following command, which we do not
explain further:

canvas.addMouseListener (new MouseListener () {
public void mouseClicked (MouseEvent event) {

((JDrawingCanvas)canvas).requestFocusInWindow();
}

}

265

These three methods behave similarly to onMouseClick, onMousePress, and onMouseRelease.
The first is invoked when a key is pressed and then released. The second is invoked when a key is
pressed, and the third is invoked when the key is released.

For simple applications only one of the three may be needed. However, the listener object must
support all three methods. If only one is really needed, then the other two may be included with
empty bodies. Thus if they are invoked, the method finishes immediately without performing any
actions.

The two most useful methods available on objects of type KeyEvent are getKeyChar() and
getKeyCode(). The first of these returns the character (of type char) that was typed, while the
second returns a code of type int representing the character. The second of these often turns out
to be the most useful in that not all keys (e.g., the arrow keys) return distinct characters.

The class KeyEvent contains integer constants, called virtual key codes, for each of the keys on
the keyboard. For example, keys corresponding to letters on the keyboard are associated with con-
stants VK A through VK Z, digits are associated with VK 0 to VK 9, and the arrow keys are associated
with VK UP, VK DOWN, VK LEFT, and VK RIGHT. Constants associated with other keys can be found
in the on-line documentation for the class KeyEvent, which is in the package java.awt.event.

Sample code that uses arrow keys to change the speed of a falling ball is shown in Figure 10.17.
When the up arrow key is pressed the ball’s speed increases, while the down arrow key reduces the
speed (and can even make it negative). The methods keyTyped and keyReleased must be included,
even though their bodies are empty. They must appear because the listener must implement all of
the methods of KeyListener, even though we only want to associate an action with keyPressed
events.

10.7.2 Mouse Events

You have been reading and writing code to handle events generated by mouse actions from the
beginning of this text, but you have been using features of the objectdraw package to simplify the
code to be written. Not surprisingly, Java also provides a way to handle mouse events.

We explain how standard Java handles these events in detail in Appendix ??, so we content
ourselves with explaining only the basic ideas here. Fundamentally, mouse events are handled very
similarly to keyboard events. You associate an appropriate mouse listener with the canvas and then
write appropriate methods to handle the mouse events.

Mouse events can be generated by mouse clicks, presses, and releases, by having the mouse
enter or leave a window, and by moving or dragging the mouse. The methods mouseClicked,
mousePressed, mouseReleased, mouseEntered, and mouseExited, which handle the first five
kinds of events are part of the interface MouseListener, while the methods mouseMoved and
mouseDragged for handling moving and dragging events are part of the interface MouseMotionListener.
As with classes implementing KeyListener, if a class implements one of the mouse listener inter-
faces then it must provide methods for all of the associated methods, even if they are not needed
in the class.

All of the mouse event-handling methods take a parameter of type MouseEvent that con-
tains information about where the event occurred. If evt is a MouseEvent then evt.getX() and
evt.getY() return the x and y coordinates of where the mouse was when the event occurred.

Classes extending WindowController support methods with similar, but slightly different,
names corresponding to each of these methods. Our methods also differ by taking a Location

266

import objectdraw.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KeyBallController extends WindowController implements KeyListener {
// Constants omitted
private FallingBall droppedBall; // the falling ball
private int speed = SLOW_SPEED; // speed of ball
private JLabel speedLabel; // label showing speed

// create and install GUI items
public void begin() {

JPanel southPanel = new JPanel();
speedLabel = new JLabel("The speed is "+speed, JLabel.CENTER);
southPanel.add(speedLabel);

Container contentPane = getContentPane();
contentPane.add(southPanel, BorderLayout.SOUTH);
contentPane.validate();

canvas.addKeyListener (this);
this.addKeyListener (this);

requestFocusInWindow();
}

// make a new ball when the player clicks
public void onMouseClick(Location point) {

droppedBall = new FallingBall(point, speed, canvas);
}

// Required by KeyListener Interface but not used here.
public void keyTyped(KeyEvent e) { }

// Required by KeyListener Interface but not used here.
public void keyReleased(KeyEvent e) { }

// Change speed with up and down arrow keys
public void keyPressed(KeyEvent e)
{

if (e.getKeyCode() == KeyEvent.VK_UP) {
speed++;

} else if (e.getKeyCode() == KeyEvent.VK_DOWN) {
speed--;

}
if (droppedBall != null) {

droppedBall.setSpeed(speed);
}
speedLabel.setText("The speed is "+speed);

}
}

Figure 10.17: Controlling ball speed with the keyboard
267

as a parameter rather than an event. That was done in order to make it simpler for you to get the
information you needed about each kind of mouse event.

The appendix explains how our methods are actually called by the standard Java mouse meth-
ods. Because of this interaction, you should avoid using standard Java mouse event-handling code
with a class that extends WindowController.

10.8 Summary

In this chapter we introduced the standard Java event model and a number of GUI components.
While there is a lot more that can be learned about the design of graphic user interfaces, the
information provided here should be enough to get you started in writing programs using simple
GUI components.

The tasks to be performed in creating and using GUI components include the following:

1. Create the GUI component.

2. Add the GUI component to a container (either a panel or the content pane of a
window) and validate it.

3. If a listener is needed,

(a) Add this as a listener for the GUI component.
(b) Add a declaration that the WindowController extension implements the ap-

propriate listener interface.
(c) Add to the WindowController the event-handling method promised by the

listener interface.

Tables 10.1 and 10.2 summarize the information needed to use GUI components and handle
the associated events. Listeners for particular events are associated by sending a message of the
form addSomeListener to the GUI component generating the event, where SomeListener should
be replaced by the name of the listener. For example, to associate a listener with a button, send
an addActionListener message to the button because the listener associated with buttons is
ActionListener.

A getSource message can be sent to any event to obtain the object that generated the event.
Events from the class ChangeEvent, generated by sliders, support getValue messages. Events from
the class KeyEvent support methods getKeyCode and getKeyChar, while events from MouseEvent
support methods getX and getY that return integer x and y coordinates of where the mouse was
when the event was generated.

We discussed three Java layout managers for container classes like windows and panels. The
FlowLayout manager inserts GUI components in the container from left to right, starting a new
row when there is no more space available. It is the default layout for panels. GridLayout divides
the container into a rectangular grid, where each cell has the same size. It inserts components
from left to right starting with the top row, proceeding to the next row after each row is filled.
BorderLayout is the default for content panes of extensions of WindowController. That layout
manager allows items to be inserted in the center, north, south, east, and west of the container. The
layout manager for a container may be changed by sending it the message setLayout(manager)
where manager is a new object generated from one of the layout managers.

268

Component Constructors Associated Methods
JButton new JButton(String label) String getText()

void setText(String newText)
JComboBox new JComboBox() void addItem(Object item)

void setSelectedItem(Object item)
Object getSelectedItem()
void setSelectedIndex(int itemNum)
int getSelectedIndex()

JSlider new JSlider(int orientation, int getValue()
int lowVal, int highVal)
int startValue)

JLabel new JLabel(String text) String getText()
void setText(String newText)

JTextField new JTextField(String initialContents, String getText()
int numCols) void setText(String newText)

new JTextField(String initialContents)
new JTextField(int numCols)

JTextArea new JTextArea(String initialContents, String getText()
int numRows, int numCols) void setText(String newText)

void append(String newText)

Table 10.1: Constructors and methods associated with GUI components

Event type Generated by Listener Interface Method invoked

ActionEvent JButton, ActionListener void actionPerformed(evt)
JTextField

ItemEvent JComboBox ActionListener void actionPerformed(evt)
ChangeEvent JSlider ChangeListener void stateChanged(evt)
KeyEvent Keyboard KeyListener void keyTyped(evt)

void keyPressed(evt)
void keyReleased(evt)

MouseEvent Mouse MouseListener void mouseClicked(evt)
void mousePressed(evt)
void mouseReleased(evt)
void mouseEntered(evt)
void mouseExited(evt)

MouseEvent Mouse MouseMotionListener void mouseDragged(evt)
void mouseMoved(evt)

Table 10.2: Events, GUI components generating them, and associated interfaces and methods
handling the events. Parameter evt always has the associated event type.

269

The add message is sent to a container in order to add a new component. With FlowLayout and
GridLayout only the component to be added is sent as a parameter. However, with BorderLayout
the location must also be specified. Thus a second parameter, one of BorderLayout.NORTH,
BorderLayout.SOUTH, BorderLayout.EAST, BorderLayout.WEST, or BorderLayout.CENTER, must
be included.

You will discover that it often takes a fair amount of experimentation to make graphical user
interfaces look good. Further information on Java GUI components from either the AWT or Swing
package should be available on-line either locally or from http://java.sun.com/apis.html. Many
books are also available on effective graphical user design. Our goal in this chapter was not to make
you an expert on GUI design, but instead to introduce you to the standard GUI components and
the use of standard Java event-driven programming.

270

