
Lab 10
Due: 9 May

Handout 10

CSCI 136: Spring, 2004

3 May

Final exams

1 Introduction

You are to write a program which will help the registrar schedule final exams so that no student has two
exams at the same time. You are to use a “greedy” algorithm to determine an assignment of classes to exam
slots so that:

1. No student is enrolled in two courses assigned to the same exam slot.

2. Any attempt to combine two slots into one would violate rule 1.

Thus we wish to get by without gratuitously wasting exam slots (students would like to get out of here
as soon as possible, after all).

2 What

Input to the program will be a file generated by my program “Register”, which is in file “Register.java” (see
the assignment web page). Information on each student is written on the file using the writeUTF method
of DataOutputStream. For each student, 5 strings are written. The first for the name, and the next 4 for
courses selected. The program insists that each student takes exactly 4 courses. A possible file would include

• Kim Bruce taking CSCI 136, MATH151, ENGL201, and PHIL101;

• Peter Murphy taking PSYC 212, ENGL 201, HIST 301, and CSCI 136; and

• David Edwards taking SOCI 201 CSCI 136, MATH 151, and PSYCH 212.

The output of the program should be a list of time slots with the courses whose final will be given at
that slot.

3 How

The key to doing this assignment is to build a graph as you read in the file of students and their schedules.
(An end-of-file condition will be signalled by a student name “$$”.)

Each node of the graph will be a course taken by at least one student in the college. An edge will be
drawn between two nodes if there is at least one student taking both courses. The label of an edge could be
the number of students with both classes (though we don’t really need the weights for this program). Thus
if there are only the three students listed above, the graph would be as given below (edges without a weight
label have weight 1).

1



A “greedy” algorithm to find an exam schedule satisfying our two constraints would work as follows.
Choose a course (say, PHIL 101) and stick it in the first time slot. Search for a course to which it is not

connected. If you find one (e.g., HIST 301), add it to the time slot. Now try to find another which is not
connected to any of those already in the time slot. If you find one (e.g., SOCI 201), add it to the time slot.
Continue until all nodes in the graph are connected to at least one element in the time slot. When this
happens, no more courses can be added to the time slot (why?). (By the way, the final set of elements in
the time slot is said to be a maximal independent set in the graph.)

If there are remaining nodes in the graph, pick one and enter it in a new time slot and then try adding
other courses to the same slot as before. Continue adding time slots for remaining courses until all courses
are taken care of. Print the exam schedule. For the graph shown, a possible exam schedule is:

Time 1: PHIL 101, HIST 301, SOCI 201

Time 2: MATH 151

Time 3: CSCI 136

Time 4: ENGL 201

Time 5: PSYC 212

Notice that no pair of time slots can be combined without creating a time conflict with a student.
Unfortunately, this is not the minimal schedule as one can be formed with only 4 time slots. (See if you can
find one!) Thus a greedy algorithm of this sort will give you a schedule with n slots, no two of which can be
combined, but a different selection of courses in slots may result in fewer than n slots. Any schedule which
satisfies are our constraints will be acceptable (though see below for extra credit).

4 Hints for building the final exam schedule:

You are to represent graphs as adjacency lists. (Why does that make the most sense for this application?)
Vertex labels should be the course names.

Here is one possible way to find a collection of maximal independent sets from the graph. Represent each
slot by some sort of a list (or, better yet, a binary search tree). To find a maximal independent set for a
slot, pick any vertex of the graph and add it to the list. Cycle through all other vertices of the graph. If a
vertex is not connected to any of the vertices already in the slot, throw it in. Continue until you’ve tried all
vertices. Now delete all vertices in the slot from the graph. Fill successive slots in the same way until there
are no vertices left in the graph.

5 Extra Credit:

A wide variety of extra credit is possible. Here are some options:

1. Always generate the best possible exam schedule (that is, the one with the fewest number of slots).

2. Allow students to take more or fewer than four courses.

3. Print out a final exam schedule for each student.

4. Print out a final exam schedule ordered by course number.

5. Arrange the time slots in an order which tries to minimize the number of students who must take
exams in three consecutive time slots. Warning: This part is hard!

Feel free to add other useful bells and whistles. As usual, be sure sure to indicate in the heading of your
program what extras you have included.

2



6 Implementation Hints:

I suggest that you look very carefully at my program for generating the files in order to see how I wrote
the files. You will use similar file operations (except reading instead of writing). You should print the final
exam schedule in a text area in a frame. An important operation for this is “append(String newText)”
which adds newText to the end of whatever has been written so far in the TextArea. Sending the message
setEditable(false) to the TextArea will ensure that the user cannot accidentally override the information
printed there (only the program can write information there).

7 Using Dialog Boxes in Java

Java provides a built-in class, FileDialog, in the AWT package to allow the user to select files for saving
or loading. The constructors for FileDialog include

FileDialog(Frame, String)

FileDialog(Frame, String, int)

The constructor creates a file dialog window associated with the specified frame and with the specified
title for loading or saving a file. The optional int argument is FileDialog.LOAD or FileDialog.SAVE. If
omitted the default is FileDialog.LOAD. The following sample code shows how a FileDialog can be used
in a program to get a file name to be read from.

String fileName;

do {

dialog = new FileDialog(myFrame,"Load a schedule file");

dialog.show();

fileName = dialog.getFile();

} while (fileName == null);

This code attaches a dialog box to myFrame. When executed, the code creates and shows the dialog.
The dialog.getFile() command either returns a string representing the file name to be loaded or null (if
the cancel button is clicked from the dialog box). Thus the loop continues creating and displaying the dialog
box until a file is selected.

The programmer now must write commands to open and read from the file.

8 Writing to files

In this section, we provide the code used to write a file from the Register class. You will need to do
something similar in your Schedule class except that you will be reading instead of writing, output will be
changed to input, etc.

// Open file and go to data entry field when click on start button

public void actionPerformed(ActionEvent evt){

String fileName;

do {

FileDialog dialog = new FileDialog(Register.this,"New file for students:",FileDialog.SAVE);

dialog.show();

fileName = dialog.getFile();

} while (fileName == null);

try {

outFile = new DataOutputStream(new FileOutputStream(fileName));

cardManager.last(contentPane);

} catch(IOException e) {

3



System.out.println("Not legal name! Re-enter file name:");

}

}

...

try {

outFile.writeUTF(name);

for (int courseNo = 0; courseNo < 4; courseNo++) {

outFile.writeUTF(courses[courseNo]);

}

...

} catch (IOException e) {

message.setText("Bad data caused write failure");

}

You will read the data out exactly as it was read in, using readUTF() on a file obtained from the
DataInputStream and FileInputStream constructors.

4


