Machine-Level Programming: Control

CSCI 237: Computer Organization
oth Lecture, Feb 28, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

Administrative Details
m Lab 2: first three phases due Tue/Wed

" Intermediate “results” automatically collected (no need to submit)
= Submit defuser.txt and short writeup on Glow when finished all 5 phases
" Any questions so far??

m HW 2 due today, HW 3 due next Friday

= Finally, congrats to winners! ©

1 2 3 4 5 6 7 8 9 10 11 12 Winner? Score Nickname

3 4 7 9 11 4 6 3 8 5 2 14 Winner! 20 Nathan

3 4 7 9 11 4 6 3 10 5 2 16 Winner! 16 ben

3 4 7 16 11 5 7 3 12 5 4 19 0 jeannie

3 4 7 9 1 7 6 3 14 5 — — — nickname?2
3 6 7 9 — 4 — 3 - - — — — Saul Goodman

e
Last Time:

Machine Programming: Ops & Control

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

m Intro to data-dependent control

Recap:

Complete Memory Addressing Modes

m Most General Form

D(Rb,Ri,S) " Mem[Reg[Rb]+S*Reg[Ri]+ D]

= D: Constant “displacement” (no restrictions!)

*= Rb: Base register Reg[Rb]: Any of 16 integer registers

" Ri: Index register Reg[Ri]: Any, except for $rsp

=S Scale: 1, 2,4, or8

m Special Cases

(Rb,Ri) " Mem|
D(Rb,Ri) ~ Mem|]

(Rb,Ri,S) " Mem[Reg

Reg

Reg[Rb]
Rb]

Rb]

+Reg|[Ri]]
+Reg[Ri]+D]
+S*Reg|[Ri]]

.
Today:

Machine Programming: Ops & Control

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

m Intro to data-dependent control

Arithmetic Operations

m Two Operand Instructions:
Format Computation
addg Src, Dest Dest = Dest + Src
subqg Src, Dest Dest = Dest — Src
imulg Src, Dest Dest = Dest * Src

salqg Src, Dest Dest = Dest << Src (Also called shlq)
sarqg Src, Dest Dest = Dest >> Src Arithmetic right shift
shrqg Src, Dest Dest = Dest >> Src Logical right shift
XO0rg Src, Dest Dest = Dest N Src

andqg Src, Dest Dest = Dest & Src

orq Src, Dest Dest = Dest | Src

m Remember argument order! Src, Dest
(Warning (again): Intel docs use “op Dest,Src”)

= No distinction between signed and unsigned int in x86

Arithmetic Operations

m One Operand Instructions

incqg Dest Dest = Dest + 1
decqg Dest Dest = Dest -1
negq Dest Dest = — Dest
notqg Dest Dest = ~“Dest

m See book for a more complete list!

Arithmetic Expression Example

long arith (long x, arith:
long y, leaq $rdi,%rsi), S%rax
long z) { addq $rdx, %$rax
long tl = x + y; leaq $rsi,%$rsi,2), %rdx
long t2 = z + t1; salqg $4, %rdx
long t3 = x + 4; leaq 4 (%rdi,%rdx), %rcx
long t4 = y * 48; imulg %rcx, %rax
long t5 = t3 + t4; ret
long rval = t2 * t5;
} T EEL Instructions
* leaq: address computation

" salq: left shift
* imulgqg: multiplication

= Only used once

Arithmetic Expression Example

long arith (long x, arith:
long vy, leaq ($rdi, %rsi), %rax # tl
long z) { addg $rdx, %$rax # t2
long t1 = x + y; leaq (%rsi,$rsi,2), %$rdx
long t2 = z + tl1; salq $4, %rdx # t4
long t3 = x + 4; leaq 4 (%rdi,%rdx), %$rcx # t5
long t4 =y * 48; imulg %rcx, %rax # rval
long t5 = t3 + t4; ret
long rval = t2 * t5;
return rval; Register Use(s)
} %rdi Argument x
%rsi Argumenty
%rdx Argument z, t4
%rax t1, t2, rval
%rcx t5

- —————————————0—0————00000//7]
Today:
Machine Programming: Ops & Control
m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code
m Intro to data-dependent control

10

-
Turning C into Object Code

" Codeinfiles pl.c p2.c
® Compile with command: gecc -Og pl.c p2.c -o p
= —0g : Use “general optimizations” (but nothing too crazy)
= -0 p: Putresulting output binary in file . /p (a.out by default)

text C program (pl.c p2.c)
(-S stores
Compiler (gcc -Og -S) intermediate
x86 code)
text X86-64 program (pl.s p2.s)
\ Assembler (gcc or as)
binary Object program (pl.o0 p2.0) Static libraries

(.a)

Linker (gcc or 1d)

v

binary Executable program (p)

11

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg $rbx
void sumstore(long x, long vy, movq rdx, %rbx
long *dest) ({ call plus
long t = plus(x, y); movq $rax, (%rbx)
*dest = t; popq $rbx
} ret

Obtain (on lab machines) with command
gcc —-0Og —S sum.cC

Produces file sum. s

Warning: May get slightly different results on other (non-
lab) machines due to different versions of gcc and different
compiler settings.

12

What it really looks like

.file "sum.c"
.text
.globl sumstore

.type sumstore, @function

sumstore:

.LFBO:
.cfi_startproc
pushq %rbx
.cfi_def cfa offset 16
.cfi_offset 3, -16

movq %rdx, %rbx
call plus
movq %rax, (%rbx)

popq %rbx
.cfi_def cfa offset 8
ret
.cfi_endproc
.LFEO:
.size sumstore, .-sumstore
.ident "GCC: (Ubuntu 4.8.4-2ubuntul~14.04.3) 4.8.4"

.section .note.GNU-stack,"",@progbits
13

What it really looks like

sumstore:

pushq

movq
call

movq

popq

ret

%rbx

%»rdx, %rbx
plus

%rax, (%rbx)
%rbx

Things that look weird and
are preceded by a ‘. are
generally directives.

(We can usually ignore them!)

sumstore:
pushqg Srbx
movq $rdx, 5%rbx
call plus
movq $rax, (%rbx)
Porgq Srbx
ret

14

e
Object Code

Code for sumstore m Assembler

0x04004ed - " Translates .sinto .o
0x53 " Binary encoding of each instruction
g:gg " Nearly-complete image of executable code
0xd3 " Missing linkages between code in different files
Oxe8 " Can use —c flag to gcc to generate .o files
0x05 .
0x00 m Linker
0x00 " Resolves references between files
8:2: o Total of 14 bytes * Combines with static run-time libraries
0x89 °* Each instruction = E.g., code formalloc, printf
0x03 1,3, or 5 bytes = Some libraries are dynamically linked

Ox5b e Starts at address

= Linking occurs when program begins
O0xc3 0x04004ed 8 Prog 8

execution

15

Machine Instruction Example

m C Code
*dest = t;

= Store value t where designated by dest

m Assembly

movq %rax, (%rbx)

" Move 8-byte value to memory
= Quad word in x86-64 terms
" Operands:
t: Register %rax
dest: Register %rbx
*dest: Memory M[%$rbx]

m Object Code
0x4004ee: 48 89 d3

= 3-byte instruction
" Stored at address 0x4004ee

16

-
Disassembling Object Code

Disassembled

00000000004004ed <sumstore>:
4004ed: 53 push $rbx
4004ee: 48 89 d3 mov %$rdx, $rbx
4004f1: e8 05 00 00 OO callg 4004fb <plus>
4004f6: 48 89 03 mov $rax, (%rbx)
4004£9: 5b pop $rbx
4004fa: c3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
" Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
" Can be run on either a.out (complete executable) or . o file

17

Operations Summary

m History of Intel processors and architectures

® Evolutionary design leads to many quirks and artifacts

m Assembly Basics: Registers, operands, move
" The x86-64 move instructions cover wide range of data movement forms

m Arithmetic

= C compiler will figure out different instruction combinations to carry out
computation

m C, assembly, machine code

® New forms of visible state: program counter, registers, ...

" Compiler must transform statements, expressions, procedures into low-
level instruction sequences

21

- —————————————0—0————00000//7]
Today:
Machine Programming: Ops & Control
m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code
m Intro to data-dependent control

22

e
Data dependent control (Ch 3.6):

Processor State (x86-64, Partial)

m Information about

currently executing Registers
program $rax %$r8
" Temporary data $rbx $r9
(%rax,..) $rcx $rl0
" Location of runtime stack S rdx °r1l
(%rsp) srsi $r12
" Location of current code e rdi 2r13
control point e srld
(%$rip, ...) = =
srbp %rlb
= Status of recent tests/ops
CF, ZF, SF, OF))
() $rip Instruction pointer
Current stack top
QZF SF | |oF Condi@

23

Reading Condition Codes

m Condition codes are extra bits that summarize the results of
operations and affect the execution of later instructions

= Set automatically during execution

m Three ways to “access” condition codes in assembly

1. Operations that set a byte to 0/1 based on some combination of the
condition codes

setX Dest instructions

1. Operations that “jump” to some part of program based on condition
codes

2. Operations that transfer (or move) data only if some condition codes
are set

24

Reading Condition Codes

m SetX Instructions

= Set low-order byte of destination to 0 or 1 based on combinations of
condition codes

= Set instructions do not alter remaining 7 bytes in register!

SetX Condition Description

sete ZF (zero flag) Equal / Zero

setne ~ZF Not Equal / Not Zero
sets SFE (sign flag) Negative

setns ~SF Nonnegative

setg ~(SFAOF) & ~ZF (overflow flag)|Greater (Signed)
setge ~ (SF*OF) Greater or Equal (Signed)
setl (SFAOF) Less (Signed)

setle (SFAOF) | ZF Less or Equal (Signed)
seta ~CF & ~ZF Above (unsigned)
setb CFE (carry flag) Below (unsigned)

25

x86-64 Integer Registers

srax / al >r8 / $r8b
Srbx / bl 29 / $r9b
Ircx $cl 2r10 $r10b
Srdx $d1 °crill $r1lb
$rsi $sil crl?2 $r12b
srdi %dil $rl3 $r13b
IrsSp \ %spl $rld \ $r14b
srbp \ %bpl $rl5 \ %r15b

" Recall: We can reference lo der byte of all registers

26

Reading Condition Codes (Cont.)

m Set Instructions: setX dest

= Set single byte based on combination of condition codes

= Often used with cmp instruction (compare)

m Dest is one of addressable single byte registers

" Does not alter remaining bytes of register

= Typically use movzbl to finish job

= 32-bit instructions also set upper 32 bitsto 0

int gt (long x,

long y){

Regster | Usel)

return x > |ly; srdi
} srsi
srax
cmpq %$rsi, %rdi # Compare x:y
setg %al # Set when >
movzbl %al, %eax # Zero rest of %rax
ret

Argument x

Argument y

Return value

27

Reading Condition Codes (Cont.)

Beware of movzbl (and others like it)

movzbl %al, %eax

Zapped to all 0’s

0x00000000 \Oxggggw\%al

~

PNt X

PNt y

value

cmpq ¥rsi, 5%rdi # Compare x:y
setg %al # Set when >
movzbl %al, %eax # Zero rest of %eax

ret

28

Data-Dependent Control

m Condition codes
m Conditional branches and moves

m Loops
m Switch Statements

29

-
Jumping

m Jump Instructions: JX address

= Jump to different part of code depending on condition codes

jX Condition Description

jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero
js SF Negative

jns ~SF Nonnegative

jg ~ (SFAOF) & ~ZF Greater (Signed)

jge ~ (SF~OF) Greater or Equal (Signed)
jl (SF~OF) Less (Signed)

jle (SFAOF) | ZF Less or Equal (Signed)
ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)

30

Conditional Branch Example (with jumps)

m Generation

Il come back to this.

> gcec -0Og —S(EEEE}if—conve%%%EE)absdiff.c

long absdiff (long x,

long y) {
long result;
if (x > y)
result = x-y;
else

result = y-x;
return result;

absdiff:
cmpq $rsi, %rdi # x:y
jle .L4
movq srdi, %rax
subq ¥rsi, Srax
ret

.L4: #} x <=y
movq ¥rsi, %rax
subq srdi, Srax
ret
Regiter | usels)
srdi Argument x
srsi Argument y

$rax Return value

AN

Conditional Branch Example (with jumps)

m Generation

> gcec -0g -S —fno-if-conversion absdiff.c

absdiff:
long absdiff (long x, cmpgq $rsi, %$rdi # x:y
long y) { jle .L4
long result; movqg $rdi, Srax
if (x > y) subq $rsi, %rax
result = x-y; ret
else .L4: # x <=y
result = y-x; movq ¥rsi, %rax
return result; subq $rdi, S%rax
} ret
Regiter | Usels)
srdi Argument x
srsi Argument y

$rax Return value

32

-
Expressing with Goto Code

= Callows goto statements (typically considered very bad
programming style!)

= Jump to (or goto) position designated by label

m Goto version of C code is similar to x86-64 with jumps

long absdiff (long x, long absdiff goto (long x,
long y) { long y) {
long result; long result;
if (x > y) int ntest = x <= y;
result = x-y; if (ntest) goto Else;
else result = x-y;
result = y-x; goto Done;
return result; Else:
} result = y-x;
Done:
return result;
}

33

jX Is a Powerful Tool

m We can convert many C control flow constructs to equivalent C
code that contains goto statements

m We can convert C code with goto statements into x86-64 with jX
m We will look closer at this mapping

Equivalent Assembly
C code > C code w/ » code w/
goto jmp

m But first, we will talk about conditional moves

34

-
General Conditional Expression Translation

(Using Branches/Jumps)

C Code (w/ ternary operator)

val = Test ? val_if true : val_if false;

val = Test ? Then Expr : Else Expr;

val = x >y ? x -y Yy - X;

Goto Version

ntest = !Test;

if (ntest) goto Else;

val = Then_Expr;

goto Done; " Execute appropriate one
Else:

val = Else_Expr;
Done:

" Create separate code regions for
then & else expressions

35

-
General Conditional Expression Translation

(Using Conditional Moves)

m Conditional Move Instructions: cmovX src, dest

" Instruction supports:

if (Test) Dest € Src C Code
= Supported in post-1995 x86 processors val = Test
" GCC tries to use them ? Then_Expr

Else_Expr ;

= But, only when known to be safe

m Benefits of cmov vs jump

" Branches (jumps) are very disruptive to
instruction flow through pipelines

“Goto” Version

result = Then_Expr;

: .y eval = Else Expr;
= Relies on good prediction for good i

nt = !Test;
performance if (nt) result = eval;
® Conditional moves do not require return result;

control transfer

36

Conditional Move Example

Gener o /\
> @ absdiff.c

long absdiff
(long x, long y) {
long result;
if (x > y)
result = x-y;
else
result = y-x;
return result;

absdiff:

movq
subq
movq
subqg
cmpq
cmovle
ret

srdi,
srsi,
%rsi,
srdi,
%rsi,
$rdx,

eval
x:y
if <=, result

Notice the compile flags!

Regster usel)

Argument x
Argument y

Return value

result = x-y

= y-X

eval

37

Bad Cases for Conditional Move

Expensive Computations
val = Test(x) ? Hardl (x) : Hard2 (x):;

m Both values get computed

m Only makes sense when both Bad Performance

computations are very simple

Risky Computations

val = p ? *p : O;

m Both values get computed

m May have undesirable effects U nsafe
Computations with side effects
val = x > 0 ? x*=7 . x+=3;

m Both values get computed "Iegal

m Must be side-effect free s

Compile flags

m If-else statements executed using conditional branches or moves
= -0g -S -fno-if-conversion
= Used to generate conditional branch code (with jumps)
= —fno-if-conversion not always needed, but often is
= -01
= Used to generate conditional move code (no jumps)

39

