Machine-Level Programming: Basics

CSCI 237: Computer Organization
7t Lecture, Feb 24, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

Administrative Details

m All puzzles due Tue/Wed at midnight
m Come see me and/or TAs for help!
m Glow HW 2 due Friday

= Covers signed/unsigned/floating point

m | will be in my office today from 12:45-1:30

Last Time: Floating Point

m Numerical Form: (-1)°* M * 2F
= Sign bit s determines whether number is negative or positive

= Significand (mantissa) M normally a fractional value in range [1.0,2.0).
" Exponent E weights value by power of two
* Normalized, denormalized, and special cases

m Encoding

= s field encodes sign bit s (O for positive, 1 for negative value)
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

Single precision: 32 bits

s |exp frac

1 8-bits 23-bits

Double precision: 64 bits

s |exp frac

1 11-bits 52-bits

Today: Machine Programming: Basics

m Floating point wrapup

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

C float Decoding Example V= (=1)°x M x 2°

E = exp - bias

float: 0xCOA00000

binary:
: , \
1 8-bits 23-bits , 6\‘(\:‘\\
WO
E= 0 [0 | 0000
1 |1 |0001
2 | 2 [0010
S= 3 | 3 | 0011
4 | 4 | 0100
5 | 5 | 0101
M= 6 | 6 | 0110
7 [7 | 0111
8 | 8 | 1000
9 | 9 | 1001
A (10 1010
B |11 | 1011
v=_(-1)°xMx 2t C 121100
D |13 | 1101
E |14 | 1110
F |15 1111

C float Decoding Example V= (=1)° x M x 2°
E = exp - bias

float: 0OxCOAO00000 Bias = 21 -1 =127

binary: 1

1] 1000 0001 | 010 0OOOO 0OOOO 0OOO 0OOOO 0OOO

. - \
1 8-bits 23-bits N 6\(&06
WO
E = 0 T0 10000
1 11 [0001
2 T2 0010
S = 3 13 [0011
2 4 10100
5 (5 [0101
M = 6 16 (0110
7 7 [0111
8 18 1000
9 19 [1001
A [10 [1010
B |11 | 1011
v=_(-1)°xMx 2t C 112 1100
D [13 [1101
E [14 | 1110
F (15| 1111

C float Decoding Example V= (=1)° x M x 2°
E = exp - bias

float: 0OxCOAO00000 Bias = 21 -1 =127

binary: 1

1] 1000 0001 | 010 0OOOO 0OOOO 0OOO 0OOOO 0OOO

: : \
1 8-bits 23-bits 6@0&\\
NN

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

%
8,

E = exp-hias = -127=2

S=1 (negative number)
M=1.
=1 + 1/4 = 1.25

v=(-1) xMx28=(-1)1 *1.25*%22=-5

H(H|O(Q|W| ||| u|n|w(iN ko
RR R R R R
alnlolom| ol e]®|N| oo s w(d - o

Floating Point in C

m C guarantees two levels
"float single precision

"double double precision

m Conversions/Casting
= Casting between int, float, and double changes bit representation @
" double/float - int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
“int - double
= Exact conversion, as long as int has <53 bit word size
“int - float

= Will round according to “rounding mode”

Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values

= Explain why not true

x == (int) (float) x X
int x = ..; x == (int) (double) x V4
float £ = ..; f == (float) (double) f£ V4
double d = .; d == (double) (float) d X

f == -(-f); e

Assume neither - 2/3 == 2/3.0 X
d nor £is NaN - d< 0.0 > ((d*2) < 0.0)
- d>f = -f > -d v 4

«d*d> 0.0 V4

(d + £)- d == X

I
FP Summary

m |IEEE Floating Point has clear mathematical properties @&

m Represents numbers of form M x 2°F

m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not exactly the same as real arithmetic

= Violates associativity/distributivity
= Makes life difficult for compilers & serious numerical applications

programmers
Single precision: 32 bits
s |exp frac
1 8-bits 23-bits

m Next up: Chapter 3!

Double precision: 64 bits

s |exp frac

1 11-bits 52-bits

10

Today: Machine Programming: Basics

m Floating point wrapup

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

11

Definitions

m Architecture: The parts of a processor design that one needs to
understand for writing assembly/machine code.

= Examples: instruction set specification, registers

= Example ISA (instruction set architecture) implementations:
= |Intel: x86, IA32, Itanium, x86-64

= ARM: Used in almost all mobile phones
m Microarchitecture: Implementation of the architecture
= Examples: cache sizes and core frequency
m Code Forms:

® Machine Code: The byte-level programs that a processor executes

= Assembly Code: A text representation of machine code (programming
language that is assembled into machine code)

12

Intel x86 Processors

m Dominate laptop/desktop/server market (for now)

m Evolutionary design
* Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)

® Many different instructions with many different formats

= But, only small subset encountered with Linux programs
® Hard to match performance of Reduced Instruction Set Computers (RISC)
® But, Intel has done just that!

= In terms of speed. Less so for low power.

m An Aside: Apple’s M1/M2 processors use a RISC design

= Designed using ARM's instruction set (commonly found in smartphones
and tablets rather than computers)

13

Transistors

Intel x86 Evolution: Milestones g
® 4 »
Name Date Transistors MHz
m 8086 1978 29K 5-10

® First 16-bit Intel processor. Basis for IBM PC & DOS
* 1MB address space
m 386 1985 275K 16-33

" First 32 bit Intel processor, referred to as IA32
= Added “flat addressing”, capable of running Unix

m Pentium4E 2004 125M 2800-3800
" First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3500
= First multi-core Intel processor (core = CPU)

m Core i/ 2008 /731M 1700-3900

" Four cores
14

Moore’s Law: The number of transistors on microchips doubles every two years [oNaWsul

in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

S0,000,000,000 GC2IRU €©AMD Epyc Rome
72-core Xeon Phj Centriq 2400 © AWS Graviton2
B SgARtC fl“’|7 032 core AMD Epyc
z torage Controller Apple A12X Bioni
10,000,000,000 e oo D Foie
18-core Xeon Haswell-E5 \ © 8 A‘)J"'Cg'b'(r.'P”h 11 Pro)
¢ pple iPhone ()
5,000,000,000 S ore e P $ e Q@AMD Ryzen 7 3700X
12-core POWERS .8 o ™ HiSilicon Kirin 710
8-core Xeon Nehalem-EXx g ngO—clore Core i7 Broadwell-F
. % ualcomm Snapdragon
Dua\.co,-scl,x{lca%';s,éczon 74000 8 8 © °Dualrcore + GPU Ir[is C(égre i7 B?oadwel\—U
4 o Quad-core + GPU GT2 Core i7 Skylake K
1,000,000,000 Pentium D Presler \ - poweRrs ° g © 8 V'S Quad-core + GPU Core i7 Haswell
Itsnium 2 with © i Apple A7 (dual-core ARM64 "mobile SoC")
MB cache Core i7 (Quad)
500,000,000 . ZLTHCACE °\ @2MD K10 quad-core 2M L3
[tanium 2 Madison 6M € Core 2 Duo Wolfdale
) Pentium D Smithfield\ ore 2.Duo Conroe
Itanium 2 McKinley € ell Core 2 Duo Wolfdale 3M
100.000.000 Pentium 4 Prescott-2M € v\OCore 2 Duo Allendale
Pentium 4 Cedar Mill
3 : AMD k8@ °Pemium 4 Prescott
S0,000’OOO ‘ PenﬁL.Jm 4 Northwood° ©Barton
Pentium 4 Willamette €p ® . : QAtom
7 ; A Pentium Ill Tualatin
Pentium Il Mobile Dixon Q@ ARM Cortex-A9
AMD K7 @ Pentium Il Coppermine ortex
AMD Ké-Ill
10,000,000 : :
PG geREhHBARE
5 2naur - utes
5,000,000 Pentium Prog, Per ﬁu,gn
Klamath
Penﬁumo AMD K5
SA-110
Intel 80486,
1,000,000 o %000
TI Expl 's 32-bit
500’000 LisT:rpn?gs{)iwe ch)il;)° AR&OO
Intel 8038 Intel ¢
nte ‘Q biYe QARM 3
Motorola 68020¢p o
DEC WRL
100,000 g . MuftiTitan °
Mgé%gjla Intel- 80286 9/%%“
50,000 " Quneisoiss
Intel 80864y €y Intel 8088 o QARM 2 AR?A 6
c ARM 1
| Motorola 65C816 y
10,000 1ys 1000 ziog 280 65 o2 NCaBie
5,000 RCA1802 Qeigogs ©7C02
Intel 80080 eln el 8080
MOS Technolo,
9, Moigga ssur T
Intel 4004
1,000
% X X X X
AP AV A 40 AP oD Gk of P o o° AV o o0 0P P Ob G & L I K K e D gP
NCOONTNTDRNTNT N NN NTNTNT NN NN QR Qo Qo Qg gr R p

Year in which the microchip was first introduced
Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)
OurWorldinData.org - Research and data to make progress against the world’s largest problems.

(e
Intel x86 Processors, cont.

m Past Generations Process technology
= 15t Pentium Pro 1995 600 nm
= 1St Pentium Il 1999 250 nm
= 1stPentium 4 2000 180 nm
= 15t Core 2 Duo 2006 65 nm Process technology dimension

= width of narrowest wires
(10 nm = 100 atoms wide)

m Recent Generations

1. Nehalem 2008 45 nm
2. Sandy Bridge 2011 32 nm
3. lvy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
/. Kaby Lake 2016/7 14 nm
8. Coffee Lake 2017 14nm
9. C.L. Refreshed 2018 14nm

10. Ice Lake 2019 10nm

16

2019 State of the Art: Ice Lake

m Mobile Device: Core i7 | M C N b
= 1-2.3 GHz |
= Turbo (3.8-4.1 GHz)
= 9-28 W
" Integrated Intel Gen 11 GPU
= 2-4 CPUs

m 2023 State of the Art is
called Meteor Lake and
uses a more complex (but
similar) design involving
tiles

m
s .
o
8
[.
Q
©
c
:n
e
[

https://lwww.servethenome.com/intel-ice-lake-era-with-microarchitecture-and-gen11-gpu-improvements/
17

Our Coverage

m |A32
= The traditional x86 (32 bit)

u x86-64 (64 bit)
® The standard
" > gcc hello.c
" > gcc —mb4 hello.c

m Presentation
= Book covers x86-64
= “Web aside” on 1A32

= We will only cover x86-64

18

Levels of Abstraction

C programmer

C code
Computer

scientists love
layers and
abstraction...

Assembly programmer

CPU

Addresses

Registers —

PC ¢ Data >
Eondition Instructions
Codes]

Computer Designer

Caches, clock freq, layout, ...

19

N
Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

" PC: Program counter * Memory

» Byte addressable arra
» Address of next instruction y y

= Called “RIP” (x86-64)
= Register file

= Code and user data
= Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching 20

Machine Programming: Basics & Ops

m Floating point summary

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

21

]
Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory I

CPU

Memory

. Addresses
Registers ———J
Dat Code
= Data

Condition

Codes @lasiouctions | Stack

22

$rax %eax r8 $r8d

$rbx %ebx 2r9 $r9d

$rcx %ecx 2rl1l0 $rl0d
$rdx 2edx $rll srlld
$rsi esi $rl2 srl2d
$rdi sedi $rl3 $rl13d
3rsp %esp srl4 $rldd
$rbp %$ebp $rlb5 $rl5d

-
Xx86-64 Integer Registers

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

* Not part of memory (or cache); part of CPU
23

Some History: |A32 Registers

general purpose

A

~—

Teax %ax %ah %al
Tecx $cx %ch $cl
sedx $dx %dh %dl
sebx $bx $bh $bl
ses1i $si
sed1i sdi
sesp %sp
sebp $bp
Y

16-bit virtual registers
(backwards compatibility)

Origin

(mostly obsolete)

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

24

Assembly Characteristics: Operations

m Transfer data between memory and register
* Load data from memory into register

= Store register data into memory
= Data stored in registers is much faster to access than memory

m Perform arithmetic functions on register or memory data

m Transfer control

= Unconditional jumps to/from procedures

" Conditional branches

CPU Memory
Addresses
Registers .
Data ode
PC e EE—— Data
dEeliEn Instructions Stack
Codes <

25

Moving Data (Ch 3.4) Srax
m Moving Data Ircx
movq Source, Dest 2 rdx
m Operand Types for source and dest $rbx
" Immediate: Constant integer data Srsi
= Example: $0x400, $-533 > rdi
= Like C constant, but prefixed with ‘$’
o
» Encoded with 1, 2, or 4 bytes crsSp
= Register: One of 16 integer registers $rbp
= Example: $rax, $rl3
o : SrN
= But $rsp reserved for special use °

= Others have special uses for particular instructions
" Memory: 8 consecutive bytes of memory at address given by register
= Simplest example: ($rax)

= Various other “addressing modes” Warning: Intel docs use
mov Dest, Source '®

= Note the parentheses

26

Moving Data (Ch 3.4) srax
= Moving Data Q = quad word (8 bytes) SICX
movqjSource, Dest L = double word (4 bytes) % rdx
W = word (2 bytes - historical!)
m Operand Types for s B = byte (1 byte) srbx
Immediate: Constant integer data Srsi
= Example: $0x400, $-533 > rdi
= Like C constant, but prefixed with ‘$’
o
» Encoded with 1, 2, or 4 bytes cISp
= Register: One of 16 integer registers srbp
= Example: $rax, $rl3
» o 1 9rN
“\But $rsp reserved for special use °

= Others have special uses for particular instructions
onsecutive bytes of memory at address given by register
= Simplest example: ($rax)

= Various other “addressing modes” Warning: Intel docs use
mov Dest, Source '®

= Note the parentheses

27

Pointer Recap

m int *p; //variable p is a pointer to an integer
mint 1i; // integer value

m You dereference a pointer to get value with *:

m int 12 = *p; // integer 12 1is assigned the value that
// pointer p is pointing to

m You find address of value with &:

m int *p2 = &i; // pointer p2 will point to the memory
// address of 1

m Worth spending a few minutes digesting the concept of pointers!
m Check K&R for more info

28

movg Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;

/

movq < Move -147 into Move 0x4 into %rax
memory at address

specified in %rax (note

the parentheses)

29

movg Operand Combinations

Source Dest Src,Dest C Analog
e Reg movqg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movqg %rax,srdx temp2 = templ;
movq < Reg Reg 1 P P
Mem movqg 3%rax, (3rdx) *p = temp;
in o .
\ Move value in %rax Move value in %rax
Into into memory at into %rdx

address specified in
%rdx (note the
parentheses)

30

movg Operand Combinations

Source Dest Src,Dest

4 Reg movqg $0x4,%rax
Imm
Mem movqg $-147, ($rax)

movqg %rax,srdx
movq < Reg Reg 1
Mem movg $%rax, (%rdx)

\\Aﬂen1 Reg movq (%rax) ,b srdx
/'

Move value from memory address

specified in %rax into %rdx (note

the parentheses)

C Analog
temp = 0x4;
*p = -147;

31

movg Operand Combinations

Source Dest Src,Dest
4 <{:Reg movq $0x4,%rax
Imm
Mem movqg $-147, ($rax)

movqg %rax,srdx
movq < Reg Reg 1
Mem movg $%rax, (%rdx)

\\Aﬂenr Reg movg (%rax),%rdx

C Analog
temp = 0x4;
*p = -147;

temp2 = templ;
*p = temp;

temp = *p;

NOTE: Cannot do memory-memory transfer with a single instruction!

32

Simple Memory Addressing Modes

= Normal (Reg[R]) ™ Mem[Reg][R]]
= Register R specifies memory address
" Like pointer dereferencing in C

movq (%rcx), Srax

m Displacement D(Reg[R])— Mem[Reg[R]+D]
® Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) , srdx

33

