
1

Machine-Level Programming: Basics

CSCI 237: Computer Organization
7th Lecture, Feb 24, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details

¢ All puzzles due Tue/Wed at midnight
¢ Come see me and/or TAs for help!
¢ Glow HW 2 due Friday

§ Covers signed/unsigned/floating point

¢ I will be in my office today from 12:45-1:30

3

Last Time: Floating Point
¢ Numerical Form: (–1)s * M * 2E

§ Sign bit s determines whether number is negative or positive
§ Significand (mantissa) M normally a fractional value in range [1.0,2.0).
§ Exponent E weights value by power of two
§ Normalized, denormalized, and special cases

¢ Encoding
§ s field encodes sign bit s (0 for positive, 1 for negative value)
§ exp field encodes E (but is not equal to E)
§ frac field encodes M (but is not equal to M)

4

Today: Machine Programming: Basics

¢ Floating point wrapup
¢ History of Intel processors and architectures
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations
¢ C, assembly, machine code

5

C float Decoding Example
float: 0xC0A00000

binary:

1 8-bits 23-bits

E =

S = 1 -> negative number

M = 1.010 0000 0000 0000 0000 0000
M = 1 + 1/4 = 1.25

v = (–1)s x M x 2E

v = (–1)s x M x 2E
E = exp – bias

6

1 8-bits 23-bits

C float Decoding Example

E =

S = 1 -> negative number

M = 010 0000 0000 0000 0000 0000
M = 1 + 1/4 = 1.25

v = (–1)s x M x 2E

float: 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

Bias = 2k-1 – 1 = 127

v = (–1)s x M x 2E
E = exp – bias

7

C float Decoding Example
float: 0xC0A00000

binary: 1100 0000 1010 0000 0000 0000 0000 0000

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits 23-bits

E =

S =

M =
M = 1 + 1/4 = 1.25

v = (–1)s x M x 2E

Bias = 2k-1 – 1 = 127

exp – bias = 129 – 127 = 2

1 (negative number)
1.010 0000 0000 0000 0000 0000

= (-1)1 * 1.25 * 22 = -5

v = (–1)s x M x 2E
E = exp – bias

8

Floating Point in C

¢ C guarantees two levels
§float single precision
§double double precision

¢ Conversions/Casting
§ Casting between int, float, and double changes bit representation 😩
§ double/float → int

§ Truncates fractional part
§ Like rounding toward zero
§ Not defined when out of range or NaN: Generally sets to TMin

§ int → double
§ Exact conversion, as long as int has ≤ 53 bit word size

§ int → float
§ Will round according to “rounding mode”

9

Floating Point Puzzles

¢ For each of the following C expressions, either:
§ Argue that it is true for all argument values
§ Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (double)(float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d + f)- d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

10

FP Summary

¢ IEEE Floating Point has clear mathematical properties 😊👍
¢ Represents numbers of form M x 2E

¢ One can reason about operations independent of
implementation
§ As if computed with perfect precision and then rounded

¢ Not exactly the same as real arithmetic
§ Violates associativity/distributivity
§ Makes life difficult for compilers & serious numerical applications

programmers

¢ Next up: Chapter 3!

11

Today: Machine Programming: Basics

¢ Floating point wrapup
¢ History of Intel processors and architectures
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations
¢ C, assembly, machine code

12

Definitions

¢ Architecture: The parts of a processor design that one needs to
understand for writing assembly/machine code.
§ Examples: instruction set specification, registers
§ Example ISA (instruction set architecture) implementations:

§ Intel: x86, IA32, Itanium, x86-64
§ ARM: Used in almost all mobile phones

¢ Microarchitecture: Implementation of the architecture
§ Examples: cache sizes and core frequency

¢ Code Forms:
§ Machine Code: The byte-level programs that a processor executes
§ Assembly Code: A text representation of machine code (programming

language that is assembled into machine code)

13

Intel x86 Processors

¢ Dominate laptop/desktop/server market (for now)
¢ Evolutionary design

§ Backwards compatible up until 8086, introduced in 1978
§ Added more features as time goes on

¢ Complex instruction set computer (CISC)
§ Many different instructions with many different formats

§ But, only small subset encountered with Linux programs
§ Hard to match performance of Reduced Instruction Set Computers (RISC)
§ But, Intel has done just that!

§ In terms of speed. Less so for low power.

¢ An Aside: Apple’s M1/M2 processors use a RISC design
§ Designed using ARM's instruction set (commonly found in smartphones

and tablets rather than computers)

14

Intel x86 Evolution: Milestones

Name Date Transistors MHz
¢ 8086 1978 29K 5-10

§ First 16-bit Intel processor. Basis for IBM PC & DOS
§ 1MB address space

¢ 386 1985 275K 16-33
§ First 32 bit Intel processor , referred to as IA32
§ Added “flat addressing”, capable of running Unix

¢ Pentium 4E 2004 125M 2800-3800
§ First 64-bit Intel x86 processor, referred to as x86-64

¢ Core 2 2006 291M 1060-3500
§ First multi-core Intel processor (core = CPU)

¢ Core i7 2008 731M 1700-3900
§ Four cores

15

16

Intel x86 Processors, cont.
¢ Past Generations

§ 1st Pentium Pro 1995 600 nm
§ 1st Pentium III 1999 250 nm
§ 1st Pentium 4 2000 180 nm
§ 1st Core 2 Duo 2006 65 nm

¢ Recent Generations
1. Nehalem 2008 45 nm
2. Sandy Bridge 2011 32 nm
3. Ivy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
7. Kaby Lake 2016/7 14 nm
8. Coffee Lake 2017 14nm
9. C.L. Refreshed 2018 14nm
10. Ice Lake 2019 10nm

Process technology

Process technology dimension
= width of narrowest wires
(10 nm ≈ 100 atoms wide)

17

2019 State of the Art: Ice Lake
¢ Mobile Device: Core i7

§ 1-2.3 GHz
§ Turbo (3.8-4.1 GHz)

§ 9-28 W
§ Integrated Intel Gen 11 GPU
§ 2-4 CPUs

¢ 2023 State of the Art is
called Meteor Lake and
uses a more complex (but
similar) design involving
tiles

https://www.servethehome.com/intel-ice-lake-era-with-microarchitecture-and-gen11-gpu-improvements/

18

Our Coverage

¢ IA32
§ The traditional x86 (32 bit)

¢ x86-64 (64 bit)
§ The standard
§ > gcc hello.c

§ > gcc –m64 hello.c

¢ Presentation
§ Book covers x86-64
§ “Web aside” on IA32
§ We will only cover x86-64

19

CPU

PC

Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

Levels of Abstraction

C programmer

Assembly programmer

Computer Designer

C code

Caches, clock freq, layout, …

Computer
scientists love

layers and
abstraction…

20

CPU

Assembly/Machine Code View

Programmer-Visible State
§ PC: Program counter

§ Address of next instruction
§ Called “RIP” (x86-64)

§ Register file
§ Heavily used program data

§ Condition codes
§ Store status information about most

recent arithmetic or logical operation
§ Used for conditional branching

PC
Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

§ Memory
§ Byte addressable array
§ Code and user data
§ Stack to support procedures

21

Machine Programming: Basics & Ops

¢ Floating point summary
¢ History of Intel processors and architectures
¢ Assembly Basics: Registers, operands, move
¢ Arithmetic & logical operations
¢ C, assembly, machine code

22

Assembly Characteristics: Data Types
¢ “Integer” data of 1, 2, 4, or 8 bytes

§ Data values
§ Addresses (untyped pointers)

¢ Floating point data of 4, 8, or 10 bytes

¢ Code: Byte sequences encoding series of instructions

¢ No aggregate types such as arrays or structures
§ Just contiguously allocated bytes in memory

CPU

PC

Registers
Memory

Code
Data
Stack

Addresses

Data

Instructions
Condition
Codes

23

%rsp

x86-64 Integer Registers

§ Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
§ Not part of memory (or cache); part of CPU

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

24

Some History: IA32 Registers
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne

ra
l p

ur
po

se

accumulate

counter

data

base

source
index

destination
index

stack
pointer

base
pointer

Origin
(mostly obsolete)

25

Assembly Characteristics: Operations
¢ Transfer data between memory and register

§ Load data from memory into register
§ Store register data into memory
§ Data stored in registers is much faster to access than memory

¢ Perform arithmetic functions on register or memory data

¢ Transfer control
§ Unconditional jumps to/from procedures
§ Conditional branches

CPU

PC
Registers

Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

26

Moving Data (Ch 3.4)
¢ Moving Data
movq Source, Dest

¢ Operand Types for source and dest
§ Immediate: Constant integer data

§ Example: $0x400, $-533
§ Like C constant, but prefixed with ‘$’
§ Encoded with 1, 2, or 4 bytes

§ Register: One of 16 integer registers
§ Example: %rax , %r13
§ But %rsp reserved for special use
§ Others have special uses for particular instructions

§ Memory: 8 consecutive bytes of memory at address given by register
§ Simplest example: (%rax)
§ Various other “addressing modes”
§ Note the parentheses

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

Warning: Intel docs use
mov Dest, Source 😩

27

Moving Data (Ch 3.4)
¢ Moving Data
movq Source, Dest

¢ Operand Types for source and dest
§ Immediate: Constant integer data

§ Example: $0x400, $-533
§ Like C constant, but prefixed with ‘$’
§ Encoded with 1, 2, or 4 bytes

§ Register: One of 16 integer registers
§ Example: %rax , %r13
§ But %rsp reserved for special use
§ Others have special uses for particular instructions

§ Memory: 8 consecutive bytes of memory at address given by register
§ Simplest example: (%rax)
§ Various other “addressing modes”
§ Note the parentheses

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

Warning: Intel docs use
mov Dest, Source 😩

Q = quad word (8 bytes)
L = double word (4 bytes)
W = word (2 bytes – historical!)
B = byte (1 byte)

28

Pointer Recap
¢ int *p; //variable p is a pointer to an integer
¢ int i; // integer value

¢ You dereference a pointer to get value with *:
¢ int i2 = *p; // integer i2 is assigned the value that
 // pointer p is pointing to

¢ You find address of value with &:
¢ int *p2 = &i; // pointer p2 will point to the memory
 // address of i

¢ Worth spending a few minutes digesting the concept of pointers!
¢ Check K&R for more info

29

movq Operand Combinations

movq

Imm
Reg
Mem

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

Src,Dest

Move 0x4 into %raxMove -147 into
memory at address
specified in %rax (note
the parentheses)

30

movq Operand Combinations

movq

Imm

Reg

Reg
Mem

Reg
Mem

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

Src,Dest

Move value in %rax
into %rdx

Move value in %rax
into into memory at
address specified in
%rdx (note the
parentheses)

31

movq Operand Combinations

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

Move value from memory address
specified in %rax into %rdx (note
the parentheses)

32

movq Operand Combinations

NOTE: Cannot do memory-memory transfer with a single instruction!

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Src,Dest

33

Simple Memory Addressing Modes
¢ Normal (Reg[R]) Mem[Reg[R]]

§ Register R specifies memory address
§ Like pointer dereferencing in C

movq (%rcx), %rax

¢ Displacement D(Reg[R]) Mem[Reg[R]+D]
§ Register R specifies start of memory region
§ Constant displacement D specifies offset

movq 8(%rbp),%rdx

