
1

Bits, Bytes, and Integers (part II)

CSCI 237: Computer Organization
3rd Lecture, Feb 12, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details

¢ Lab today and tomorrow!
¢ Six puzzles due next Tue/Wed at 11pm
¢ All puzzles due Feb 25/26 at 11pm
¢ Lab mostly focuses on material from today, next Monday, and

next Wednesday (Ch 2 in book)
¢ No class on Friday (Winter Carnival!)
¢ First Glow homework will go out next week

3

Last time: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings
¢ Summary

4

Counting in Binary
¢ How do we convert decimal to binary?

¢ For context, consider finding digits in decimal:

15213 / 2 = 7606 r1
7606 / 2 = 3803 r0
3803 / 2 = 1901 r1
1901 / 2 = 950 r1

950 / 2 = 475 r0
475 / 2 = 237 r1
237 / 2 = 118 r1
118 / 2 = 59 r0

59 / 2 = 29 r1
29 / 2 = 14 r1
14 / 2 = 7 r0
7 / 2 = 3 r1

3 / 2 = 1 r1
1 / 2 = 0 r1

15213 / 10 = 1521 r3
1521 / 10 = 152 r1
152 / 10 = 15 r2
15 / 10 = 1 r5
1 / 10 = 0 r1

5

Counting in Binary

¢ 0.2510è 0.012

¢ For context, consider finding digits in decimal:

.25 × 2 = .5 r0

.5 x 2 = 1.0 r1

.25 × 10 = 2.5 r2

.5 x 10 = 5.0 r5

6

Today: Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers (Ch 2.2)

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings
¢ Summary

7

Review: General Boolean Algebras

¢ Operate on Bit Vectors
§ Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
 01000001

01101001
| 01010101
 01111101

01101001
^ 01010101
 00111100

~ 01010101
 1010101001000001 01111101 00111100 10101010

8

Example: Representing & Manipulating Sets

¢ Representation
§ Width w bit vector represents subsets of {0, …, w–1}
§ aj = 1 if j ∈ A

§ 01101001 { 0, 3, 5, 6 } = A
§ 76543210

§ 01010101 { 0, 2, 4, 6 } = B
§ 76543210

¢ Operations
§ & Intersection A & B =01000001 { 0, 6 }
§ | Union A | B = 01111101 { 0, 2, 3, 4, 5, 6 }
§ ^ Symmetric difference A ^ B = 00111100 { 2, 3, 4, 5 }
§ ~ Complement ~B = 10101010 { 1, 3, 5, 7 }

9

Bit-Level Operations in C (Lab 1!)

¢ Operations &, |, ~, ^ available in C
§ Apply to any “integral” data type

§ long, int, short, char, unsigned
§ View arguments as bit vectors
§ Arguments applied bit-wise

¢ Examples (char data type)
§ ~0x41 ➙ 0xBE

§ ~010000012 ➙ 101111102
§ ~0x00 ➙ 0xFF

§ ~000000002 ➙ 111111112
§ 0x69 & 0x55 ➙ 0x41

§ 011010012 & 010101012 ➙ 010000012
§ 0x69 | 0x55 ➙ 0x7D

§ 011010012 | 010101012 ➙ 011111012

10

Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41 ➙ 0x00
§ !0x00 ➙ 0x01
§ !!0x41 ➙ 0x01

§ 0x69 && 0x55 ➙ 0x01
§ 0x69 || 0x55 ➙ 0x01

11

Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41 ➙ 0x00
§ !0x00 ➙ 0x01
§ !!0x41 ➙ 0x01

§ 0x69 && 0x55 ➙ 0x01
§ 0x69 || 0x55 ➙ 0x01

Watch out for && vs & (and || vs |)…

One of the more common mistakes in
beginner C programming!

12

Shift Operations

¢ Left Shift: x << y
§ Shift bit-vector x left y positions

– Throw away extra bits on left
§ Fill with 0’s on right

¢ Right Shift: x >> y
§ Shift bit-vector x right y positions

§ Throw away extra bits on right
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate most significant bit on left

¢ Undefined Behavior
§ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

13

Encoding Integers

¢ In C, short is 2 bytes long

¢ Sign Bit
§ For 2’s complement, most significant bit indicates sign

§ 0 for nonnegative
§ 1 for negative

short int x = 15213;
 short int y = -15213;

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X) = xi ×2
i

i=0

w-1

å
Unsigned (>=0) Two’s Complement (Signed)

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Binary to unsigned Binary to two’s complement

14

Two’s-complement: Simple Example

10 =
-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

To negate, flip the bits and add 1!

15

Two’s-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101

 y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

16

Numeric Ranges
¢ Unsigned Values

§ UMin = 0
000…0

§ UMax = 2w – 1
111…1

¢ Two’s Complement Values
§ TMin = –2w–1

100…0

§ TMax = 2w–1 – 1
011…1

¢ Negative 1?

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

17

Decimal Values for Different Word Sizes

¢ Observations
§ |TMin | = TMax + 1

§ Asymmetric range
§ UMax = 2 * TMax + 1

	 W	(in	bits)	
	 8	 16	 32	 64	

UMax	 255	 65,535	 4,294,967,295	 18,446,744,073,709,551,615	
TMax	 127	 32,767	 2,147,483,647	 9,223,372,036,854,775,807	
TMin	 -128	 -32,768	 -2,147,483,648	 -9,223,372,036,854,775,808	

	
	

¢ C Programming
§ #include <limits.h>
§ Declares constants, e.g.,

§ ULONG_MAX
§ LONG_MAX
§ LONG_MIN

§ Values platform specific

18

Unsigned & Signed Numeric Values
¢ Equivalence

§ Same encodings for nonnegative
values

¢ Uniqueness
§ Every bit pattern represents unique

integer value
§ Each representable integer has

unique bit encoding

¢ Þ Can Invert Mappings
§ U2B(x) = B2U-1(x)

§ Bit pattern for unsigned integer
§ T2B(x) = B2T-1(x)

§ Bit pattern for two’s comp
integer

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

19

Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

20

T2B B2U

Two’s Complement
(Signed)

Unsigned

Maintain Same Bit Pattern

x uxX

Mapping Between Signed & Unsigned

¢ Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret value

U2B B2T

Two’s Complement
(Signed)

Unsigned

Maintain Same Bit Pattern

ux xX

T2U

U2T

21

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

22

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

23

+ + + + + +• • •
- + + + + +• • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2B B2U

Two’s Complement
(Signed)

Unsigned

Maintain Same Bit Pattern

x uxX

T2U

24

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
¢ Signed ® Unsigned

§ Ordering Inversion
§ Negative ® Big Positive

25

Signed vs. Unsigned in C
¢ Constants

§ By default constants are considered to be signed integers
§ Only unsigned if they have “U” as suffix

0U, 4294967259U

¢ Casting
§ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty; //signed by default

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

§ Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

26

0 0U == unsigned
 -1 0 < signed
 -1 0U > unsigned
 2147483647 -2147483648 > signed
 2147483647U -2147483648 < unsigned
 -1 -2 > signed
 (unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

Casting Surprises
¢ Expression Evaluation

§ If there is a mix of unsigned and signed values in single expression,
signed values are implicitly cast to unsigned

§ Including comparison operations <, >, ==, <=, >=
§ Examples for W = 32: TMIN = -2,147,483,648 TMAX = 2,147,483,647

¢ Constant1 Constant2 Relation Evaluation
 0 0U
 -1 0
 -1 0U
 2147483647 -2147483647-1
 2147483647U -2147483647-1
 -1 -2
 (unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

27

Summary
Casting Signed ↔ Unsigned: Basic Rules
¢ Bit pattern is maintained
¢ But pattern is reinterpreted
¢ Can have unexpected effects: adding or subtracting 2w

¢ Expression containing signed and unsigned values
§ Signed int is cast to unsigned!!

28

Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers

§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings

29

Sign Extension
¢ Task:

§ Given w-bit signed integer x
§ Convert it to w+k-bit integer with same value

¢ Rule:
§ Make k copies of sign bit:
§ X ’ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ¢ • • • • • •

• • •

w

wk

30

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

31

Larger Sign Extension Example

¢ Converting from smaller to larger integer data type
¢ C automatically performs sign extension

short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

32

Truncation
¢ Task:

§ Given k+w-bit signed or unsigned integer X
§ Convert it to w-bit integer X’ with same value for “small enough” X

¢ Rule:
§ Drop top k bits:
§ X ’ = xw–1 , xw–2 ,…, x0

• • •

• • •X ¢
w

X • • • • • •
wk

33

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

34

Summary:
Expanding, Truncating: Basic Rules
¢ Expanding (e.g., short int to int)

§ Unsigned: zeros added
§ Signed: sign extension
§ Both yield expected result

¢ Truncating (e.g., unsigned to unsigned short)
§ Unsigned/signed: bits are truncated
§ Result reinterpreted
§ Unsigned: mod operation
§ Signed: similar to mod
§ For small numbers yields expected behavior

