Dynamic Memory Allocation:
Implicit and Explicit Free Lists

CSCI 237: Computer Organization
29t Lecture, Apr 30, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

Administrative Details

m Lab 5 —cache lab
" Due yesterday/today

m Lab 6 — malloc using explicit lists

= Starts today/tomorrow

" Starter code takes time to understand
= Also helpful to read Ch 9.9
" Think before you type!

m Glow HW due Friday

" Pencil and paper!

Last time

m Dynamic Memory Allocation (Ch 9.9)

" Basic concepts

Recap: Allocator Implementation Issues

1) How do we know how much memory to free given just a
pointer?

Use header that stored size and allocated/unallocated

2) How do we keep track of the free blocks?

3) What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

4) How do we pick a block to use for allocation -- many might fit?

5) How do we reinsert freed block?

Today

m Dynamic Memory Allocation (Ch 9.9)
" Implicit free lists
" Explicit free lists

2) Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

.

5 4

6

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each free
block, and the length used as a key

™ Lab 6!

Method 1: Implicit (Free) List

m For each block we need both size and allocation status

" Could store this information in two header words: wasteful!

m Standard trick to save space

= When blocks are alighed, some low-order address bits (3 for 8 byte
alignment) are always 0 (because everything is an even multiple of 8)

= |nstead of storing an always-0 bit, use it as an allocated/free flag
® When reading the size, we can “mask out” this bit and ignore it

Format of
allocated and
free blocks

1 word
A

Size

Payload

Optional
padding
(alignment)

a =1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

Detailed Implicit List Example

RN

~~~~~~~~~~~~
¢¢¢¢¢¢
~,

Unuse d /l’ \‘\‘ \\\ """"""""""""""""""" \\
Start Z L — T T
of 2/0 a1 ‘ 8/0 4/1 0/1|
heap
Payloads are Allocated blocks: shaded

double-word
aligned

Free blocks: unshaded

Striped blocks: unused/padding/header (not payload)
Headers: labeled with “size in words/allocated bit”

Headers are at non-aligned positions
Payloads (aka “actual” data being stored ) are aligned

10



Allocator Implementation Issues

1) How do we know how much memory to free given just a
pointer?

2) How do we keep track of the free blocks?

3) What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

4) How do we pick a block to use for allocation -- many might fit?

5) How do we reinsert freed block?

11



3) Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want to
split the block

o —

R Sa” Sa-” s’ Sa
4 4 6 2 0
p
add block(p, 4)
¢”" ‘s\"’z" N\‘g”" N\\\M”-N\A/"-N*A
4 4 4 2 2 0

void add block(ptr p, int len) ({
int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize *p & -2; // mask out low bit
*p = newsize | 1; // set new length + alloc
if (newsize < oldsize)

* (p+tnewsize) = oldsize - newsize; // set length in remaining

} // part of block

12



4) Implicit List: Finding a Free Block (9.9.7)

m First fit:

= Search list from beginning, choose first free block that fits:

P = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
" |n practice it can cause “splinters” at beginning of list

m Next fit:

= Like first fit, but search list starting where previous search finished

= Should often be faster than first fit: avoids re-scanning unhelpful blocks

" Some research suggests that fragmentation is surprisingly worse however
m Best fit:

= Search the list, choose the best free block: fits, with fewest bytes left over

= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit because we have to search entire list

13



5) Implicit List: Freeing a Block

m Simplest implementation:

* Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

® But can lead to “false fragmentation”

- -—
” N\ - N\ ’¢ \\ ’¢—~ ,f-N

PR ~a.”” S’ S, Sa. “a
4 4 4 2 2 0
t
free (p) p
,””— ) ~~~\\‘,””—- -~~\\Q¢"’—_ ) -~~~\A,”-~‘A/”-~\A
4 4 4 2 2 0

malloc(5*S1Z) QOops!

There is enough contiguous free space,
but the allocator won’t be able to find it

14



Implicit List: Coalescing

m Join (aka coalesce) with next/previous blocks, but only if they are free
® Coalescing with next block

- - ———— -
Pl SS Pig S - ~a — Ramb

P Sa” Sa” w7 Sac ~a
4 4 4 2 2 0
1 logically
free (p) e o p —-__--/ gone
’¢” N\x‘,;” N\xt,—"—— b \.‘,l’-N\‘
4 4 6 2 2 0
void free block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // f£ind next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

* But how do we coalesce with previous block?

15



Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]

= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires (more) extra space
" Important and general technique!

- —

o Ssa” Sa_-” ~"“~‘,¢’ Ssa
04 4 4 4 6 6 4 4 0
o ’,"\~ "¢’i~~~~ ’,a’i\ ”¢
Header — Size - a = 1: Allocated block
a = 0: Free block
Format of _
allocated and Payload and Size: Total block size
addin
free blocks P 8 Payload: Application data
(allocated blocks only)
Boundary tag ——» Size a

(aka footer)

16



Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

Given a block to free and its two neighbors, there are 4 unique combinations of
free/allocated to consider. Let’s look at each case individually.

17



Constant Time Coalescing (Case 1)

ml 1 ml 1
ml 1 ml 1
n 1 n 0
—)
n 1 n 0
m2 1 m2 1
m2 1 m2 1
Case 1
Allocated
Block being
freed
Allocated

18



Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m2 0
—)
n 1
m2 0
m2 0 n+m2 0
Case 2
Allocated
Block being
freed
Free 19




Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—)

n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

Case 3
Free

Block being __,
freed

Allocated 20




Constant Time Coalescing (Case 4)

ml 0 n+ml+m2 0
ml 0
n 1
—
n 1
m2 0
m2 0 n+ml+m2 0
Case 4
Free
Block being
freed

Free 21




Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?

* Which blocks need the footer tag?
* What does that mean?

22



Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?

* Which blocks need the footer tag? Only free blocks!
* What does that mean? Can save space!

23



No Boundary Tag for Allocated Blocks

m Boundary tag needed only for free blocks

m When sizes are multiples of 4 or more, have 2+ spare bits

1 word

Size

bl

Payload

Optional
padding

Allocated
Block

Allocated block

Free block

Previous block is allocated
Previous block is free

nononon
OR O R

(o K © gl P I <}

Size: block size

Payload: application data

1 word
A
—
Size b0
Unallocated
Size b0

Free
Block

24



No Boundary Tag for Allocated Blocks
(Case 1)

. m1 ?1 m1l ?1
previous
block
block n 11 n 10
being -
freed n 10
m2 11 m2 01
next
block

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

25



No Boundary Tag for Allocated Blocks
(Case 2)

ml ?1 ml ?1
previous
block
block n 11 n+m2 10
being -
freed
m2 10
next
block m2 10 n+m2 10

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

26



No Boundary Tag for Allocated Blocks
(Case 3)

_ ml ?0 n+ml ?0
previous
block
ml ?0
block n 01
being -
freed n+ml 20
m2 11 m2 01
next
block

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

27



No Boundary Tag for Allocated Blocks
(Case 4)

previous m1l 20 n+ml+m2 ?0
block
m1l ?0
block n 01
being —_—
freed
m2 10
next
block m2 10 n+ml+m2 ?0

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

28



]
Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= Interesting observation: segregated free lists (next lecture?) approximate
a best fit placement policy without having to search entire free list

m Splitting policy:
* When do we go ahead and split free blocks?
* How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time free is called

" Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc

= Coalesce when the amount of external fragmentation reaches some
threshold

29



-]
Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" linear time worst case

m Free cost:
= constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
= first-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-time
allocation

= Still used in many special purpose applications

m However, the concepts of splitting and boundary tag coalescing

30



Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

.

5 - 4 6 2

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each free
block, and the length used as a key

31



Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere
= So we need to store forward/back pointers, not just sizes
= Basically a doubly linked list
= Still need boundary tags for coalescing

= Luckily we track only free blocks, so we can use payload area
32



Explicit Free Lists

m Logically:

m Physically: blocks in free list can be in any order in physical reality

—
v

/ Forward (next) links
A m B

4 — 4|4 ale /| < 6 4 4|4 4

Back (prev) links

33



Allocating From Explicit Free Lists

Before

After

conceptual graphic

e

(with splitting)

U

malloc(...)

34




Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do we put a newly freed block?
m LIFO (last-in-first-out) policy
" Insert freed block at the beginning of the free list

® Pro: simple and constant time

" Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" Insert freed blocks so that free list blocks are always in address order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO

35



.
Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before
free(p)

Root a o)

m Insert the freed block at the root (front) of the free list

After

Root O

36



]
Freeing With a LIFO Policy (Case 2)

conceptual graphic
Before free (p)

Root ; I a o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After
f O

Root IV O B

o ¢
_
|

37



Freeing With a LIFO Policy (Case 3)

Before

Root

conceptual graphic

free(p)

]

ao

!

m Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list

After

Root [l——>

® <

; %

38



]
Freeing With a LIFO Policy (Case 4)

conceptual graphic

it

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

39



Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks in
and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m One of most common uses of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for different
types of objects

40



