
1

Dynamic Memory Allocation:
Implicit and Explicit Free Lists

CSCI 237: Computer Organization
29th Lecture, Apr 30, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details

¢ Lab 5 – cache lab
§ Due yesterday/today

¢ Lab 6 – malloc using explicit lists
§ Starts today/tomorrow
§ Starter code takes time to understand
§ Also helpful to read Ch 9.9
§ Think before you type!

¢ Glow HW due Friday
§ Pencil and paper!

3

Last time

¢ Dynamic Memory Allocation (Ch 9.9)
§ Basic concepts

4

Recap: Allocator Implementation Issues

1) How do we know how much memory to free given just a
pointer?
Use header that stored size and allocated/unallocated

2) How do we keep track of the free blocks?

3) What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

4) How do we pick a block to use for allocation -- many might fit?

5) How do we reinsert freed block?

7

Today

¢ Dynamic Memory Allocation (Ch 9.9)
§ Implicit free lists
§ Explicit free lists

8

2) Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit free list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each free

block, and the length used as a key

5 4 26

5 4 26 Lab 6!

9

Method 1: Implicit (Free) List
¢ For each block we need both size and allocation status

§ Could store this information in two header words: wasteful!

¢ Standard trick to save space
§ When blocks are aligned, some low-order address bits (3 for 8 byte

alignment) are always 0 (because everything is an even multiple of 8)
§ Instead of storing an always-0 bit, use it as an allocated/free flag
§ When reading the size, we can “mask out” this bit and ignore it

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

(alignment)

10

Detailed Implicit List Example

Start
of

heap

Payloads are
double-word
aligned

2/0 4/1 4/18/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Striped blocks: unused/padding/header (not payload)
Headers: labeled with “size in words/allocated bit”

Headers are at non-aligned positions
Payloads (aka “actual” data being stored) are aligned

11

Allocator Implementation Issues

1) How do we know how much memory to free given just a
pointer?

2) How do we keep track of the free blocks?

3) What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

4) How do we pick a block to use for allocation -- many might fit?

5) How do we reinsert freed block?

12

3) Implicit List: Allocating in Free Block
¢ Allocating in a free block: splitting

§ Since allocated space might be smaller than free space, we might want to
split the block

void add_block(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length + alloc
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

add_block(p, 4)

0

0

13

4) Implicit List: Finding a Free Block (9.9.7)
¢ First fit:

§ Search list from beginning, choose first free block that fits:

§ Can take linear time in total number of blocks (allocated and free)
§ In practice it can cause “splinters” at beginning of list

¢ Next fit:
§ Like first fit, but search list starting where previous search finished
§ Should often be faster than first fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is surprisingly worse however

¢ Best fit:
§ Search the list, choose the best free block: fits, with fewest bytes left over
§ Keeps fragments small—usually improves memory utilization
§ Will typically run slower than first fit because we have to search entire list

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

14

5) Implicit List: Freeing a Block
¢ Simplest implementation:

§ Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

§ But can lead to “false fragmentation”

4 2 244

free(p) p

4 4 24 2

malloc(5*SIZ) Oops!

There is enough contiguous free space,
but the allocator won’t be able to find it

0

0

15

Implicit List: Coalescing
¢ Join (aka coalesce) with next/previous blocks, but only if they are free

§ Coalescing with next block

§ But how do we coalesce with previous block?

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

0

0

16

Implicit List: Bidirectional Coalescing
¢ Boundary tags [Knuth73]

§ Replicate size/allocated word at “bottom” (end) of free blocks
§ Allows us to traverse the “list” backwards, but requires (more) extra space
§ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(aka footer)

4 4 4 4 6 46 4

Header

0 0

17

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Given a block to free and its two neighbors, there are 4 unique combinations of
free/allocated to consider. Let’s look at each case individually.

18

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Allocated

Allocated

Block being
freed

Case 1

19

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

Allocated

Free

Block being
freed

Case 2

20

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Free

Allocated

Block being
freed

Case 3

21

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Free

Free

Block being
freed

Case 4

22

Disadvantages of Boundary Tags

¢ Internal fragmentation

¢ Can it be optimized?
§ Which blocks need the footer tag?
§ What does that mean?

23

Disadvantages of Boundary Tags

¢ Internal fragmentation

¢ Can it be optimized?
§ Which blocks need the footer tag? Only free blocks!
§ What does that mean? Can save space!

24

No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

¢ Boundary tag needed only for free blocks
¢ When sizes are multiples of 4 or more, have 2+ spare bits

25

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

26

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

27

m1 ?0

m1 ?0
n 01

m2 11

n+m1 ?0

n+m1 ?0
m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

28

No Boundary Tag for Allocated Blocks
(Case 4)

Header: Use 2 bits (always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

29

Summary of Key Allocator Policies
¢ Placement policy:

§ First-fit, next-fit, best-fit, etc.
§ Trades off lower throughput for less fragmentation
§ Interesting observation: segregated free lists (next lecture?) approximate

a best fit placement policy without having to search entire free list

¢ Splitting policy:
§ When do we go ahead and split free blocks?
§ How much internal fragmentation are we willing to tolerate?

¢ Coalescing policy:
§ Immediate coalescing: coalesce each time free is called
§ Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
§ Coalesce as you scan the free list for malloc
§ Coalesce when the amount of external fragmentation reaches some

threshold

30

Implicit Lists: Summary
¢ Implementation: very simple
¢ Allocate cost:

§ linear time worst case

¢ Free cost:
§ constant time worst case
§ even with coalescing

¢ Memory usage:
§ will depend on placement policy
§ first-fit, next-fit or best-fit

¢ Not used in practice for malloc/free because of linear-time
allocation
§ Still used in many special purpose applications

¢ However, the concepts of splitting and boundary tag coalescing
are general to all allocators (LAB 6!!!!!)

31

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit free list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each free

block, and the length used as a key

5 4 26

5 4 26

32

Explicit Free Lists

¢ Maintain list(s) of free blocks, not all blocks
§ The “next” free block could be anywhere

§ So we need to store forward/back pointers, not just sizes
§ Basically a doubly linked list

§ Still need boundary tags for coalescing
§ Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

33

Explicit Free Lists
¢ Logically:

¢ Physically: blocks in free list can be in any order in physical reality

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

34

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

35

Freeing With Explicit Free Lists
¢ Insertion policy: Where in the free list do we put a newly freed block?
¢ LIFO (last-in-first-out) policy

§ Insert freed block at the beginning of the free list
§ Pro: simple and constant time
§ Con: studies suggest fragmentation is worse than address ordered

¢ Address-ordered policy
§ Insert freed blocks so that free list blocks are always in address order:

 addr(prev) < addr(curr) < addr(next)
§ Con: requires search

§ Pro: studies suggest fragmentation is lower than LIFO

36

Freeing With a LIFO Policy (Case 1)

¢ Insert the freed block at the root (front) of the free list

free()

Root

Root

Before

After

conceptual graphic

37

Freeing With a LIFO Policy (Case 2)

¢ Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

38

Freeing With a LIFO Policy (Case 3)

¢ Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

39

Freeing With a LIFO Policy (Case 4)

¢ Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

40

Explicit List Summary
¢ Comparison to implicit list:

§ Allocate is linear time in number of free blocks instead of all blocks
§ Much faster when most of the memory is full

§ Slightly more complicated allocate and free since needs to splice blocks in
and out of the list

§ Some extra space for the links (2 extra words needed for each block)
§ Does this increase internal fragmentation?

¢ One of most common uses of linked lists is in conjunction with
segregated free lists
§ Keep multiple linked lists of different size classes, or possibly for different

types of objects

