
1

Dynamic Memory Allocation:
Basic Concepts

CSCI 237: Computer Organization
28th Lecture, Apr 28, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details
¢ Lab 5 – Cache lab
§ Due Tue/Wed

¢ Glow HW due Fri
§ Covers virtual memory

¢ Lab 6 – Malloc lab
§ Partners allowed again – submit form
§ Tricky lab! Please take a moment to read the webpage and look

at the starter code before your lab session

¢ Final exam options
§ Thur May 22 in the morning (time/location TBD)
§ Sat May 24 in the afternoon (registrar scheduled time and place)

https://forms.gle/YCbxvCq3iqvHp9737

3

Last time

¢ Simple memory system example wrapup (Ch 9.6)
¢ Case study: Core i7/Linux memory system (Ch 9.7)

4

Today

¢ Dynamic Memory Allocation (Ch 9.9)
§ Basic concepts
§ Implicit free lists

5

Dynamic Memory Allocation

¢ Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory at run time.
§ For data structures whose size is

only known at runtime (rather
than compile time).

¢ Dynamic memory allocators
manage an area of process
virtual memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
 (brk ptr)

Application

Dynamic Memory Allocator (OS)

Heap

6

Dynamic Memory Allocation

¢ Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free.

¢ Types of allocators
§ Explicit allocator: application allocates and frees space

§ E.g., malloc and free in C
§ Implicit allocator: application allocates, but does not free space

§ E.g. garbage collection in Java and Python

¢ Will discuss simple explicit memory allocation today

7

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

§ Successful:
§ Returns a pointer to a memory block of at least size bytes

aligned to an 16-byte boundary (on x86-64)
§ If size == 0, returns NULL

§ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
§ Returns the block pointed at by p to pool of available memory
§ p must come from a previous call to malloc or realloc

Other functions
§ calloc: Version of malloc that initializes allocated block to zero.
§ realloc: Changes the size of a previously allocated block.
§ sbrk: Used internally by allocators to grow or shrink the heap

8

malloc Example
#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i, *p;

/* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {

perror("malloc");
exit(0);

}

/* Initialize allocated block */
for (i=0; i<n; i++) {

p[i] = i;
}

/* Return allocated block to the heap */
 free(p);
}

9

Simplifying Assumptions Made in This Lecture

¢ Memory is word addressed
¢ Words are int-sized (4 bytes)

§ Each box below contains 4 bytes

¢ Allocations are double-word (8 byte) aligned

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

10

Allocation Example

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(int)

11

Constraints
¢ Applications ((i.e., programs)

§ Can issue arbitrary sequence of malloc and free requests
§ free request must be to a malloc’d block

¢ Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc requests

§ i.e., can’t reorder or buffer requests
§ Must allocate blocks from free memory

§ i.e., can only place allocated blocks in free memory
§ Must align blocks so they satisfy all alignment requirements

§ 16-byte (x86-64) alignment on Linux machines
§ Can manipulate and modify only free memory
§ Can’t move the allocated blocks once they are malloc’d

§ i.e., compaction is not allowed

12

Performance Goals: Throughput

¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Throughput:
§ Number of completed requests per unit time
§ Example:

§ 5,000 malloc calls and 5,000 free calls in 10 seconds
§ Throughput is 1,000 operations/second

13

Performance Goal: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi≤k Pi) / Hk

14

Performance Goal: Peak Memory Utilization
¢ Given some sequence of malloc and free requests:
§ R0, R1, ..., Rk, ... , Rn-1

¢ Def: Aggregate payload Pk
§ malloc(p) results in a block with a payload of p bytes
§ After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

¢ Def: Current heap size Hk
§ Assume Hk is monotonically nondecreasing

§ i.e., heap only grows when allocator uses sbrk

¢ Def: Peak memory utilization after k+1 requests
§ Uk = (maxi≤k Pi) / Hk

¢Performance Goals:
§ 1) Maximize throughput
§ 2) Maximize peak memory utilization

¢These goals are often conflicting!

15

Fragmentation

¢ Poor memory utilization often caused by fragmentation
§ internal fragmentation
§ external fragmentation

16

Internal Fragmentation
¢ For a given block, internal fragmentation occurs if payload is smaller

than block size

¢ Caused by
§ Overhead of maintaining heap data structures
§ Padding for alignment purposes
§ Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

¢ Depends only on the pattern of previous requests
§ Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

17

External Fragmentation

¢ Occurs when there is enough aggregate heap memory, but no
single free block is large enough

¢ Depends on the pattern of future requests
§ Thus, difficult to measure

p4 = malloc(7*SIZ) Oops! (what would happen now?)

#define SIZ sizeof(int)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

18

Implementation Issues

¢ How do we know how much memory to free given just a
pointer?

¢ How do we keep track of the free blocks?

¢ What do we do with the extra space when allocating a structure
that is smaller than the free block it is placed in?

¢ How do we pick a block to use for allocation -- many might fit?

¢ How do we reinsert freed block?

19

Knowing How Much to Free

¢ Standard method
§ Keep the length of a block in the word preceding the block.

§ This word is often called the header field or header
§ Requires an extra word for every allocated block

p0 = malloc(4*SIZ)
p0

free(p0)

block size Payload
(aligned)

5

20

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused
4 6 4 2

4 6 4 2

Lab 6!

21

Today

¢ Dynamic Memory Allocation (Ch 9.9)
§ Basic concepts
§ Implicit free lists

22

Method 1: Implicit Free List (Ch 9.9.6)
¢ For each block we need both size and allocation status

§ Could store this information in two words: wasteful!

¢ Standard trick
§ When blocks are aligned, some (3) low-order address bits are always 0
§ Instead of storing an always-0 bit, use it as an allocated/free flag
§ When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

23

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

2/0 4/1 4/18/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”

Headers are at non-aligned positions
Payloads are aligned

24

Implicit List: Finding a Free Block (9.9.7)
¢ First fit:

§ Search list from beginning, choose first free block that fits:

§ Can take linear time in total number of blocks (allocated and free)
§ In practice it can cause “splinters” at beginning of list

¢ Next fit:
§ Like first fit, but search list starting where previous search finished
§ Should often be faster than first fit: avoids re-scanning unhelpful blocks
§ Some research suggests that fragmentation is worse

¢ Best fit:
§ Search the list, choose the best free block: fits, with fewest bytes left over
§ Keeps fragments small—usually improves memory utilization
§ Will typically run slower than first fit

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

25

Implicit List: Allocating in Free Block
¢ Allocating in a free block: splitting

§ Since allocated space might be smaller than free space, we might want to
split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

0

0

26

Implicit List: Freeing a Block
¢ Simplest implementation:

§ Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

§ But can lead to “false fragmentation”

4 2 244

free(p) p

4 4 24 2

malloc(5*SIZ) Oops!

There is enough contiguous free space,
but the allocator won’t be able to find it

0

0

27

Implicit List: Coalescing
¢ Join (coalesce) with next/previous blocks, if they are free

§ Coalescing with next block

§ But how do we coalesce with previous block?

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

0

0

28

Implicit List: Bidirectional Coalescing
¢ Boundary tags [Knuth73]

§ Replicate size/allocated word at “bottom” (end) of free blocks
§ Allows us to traverse the “list” backwards, but requires extra space
§ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

0 0

29

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

30

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

31

Constant Time Coalescing (Case 2)

m1 1

m1 1
n 1

n 1
m2 0

m2 0

m1 1

m1 1
n+m2 0

n+m2 0

32

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

33

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

