
1

Introduction to Virtual Memory

CSCI 237: Computer Organization
24th Lecture, Apr 18, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details
¢ Lab 5 – Cache simulator
§ Just a simulator, not an actual cache!
§ Keep track of hits and misses without moving data around

¢ Glow HW due today

3

More Lab 5 Hints

¢ What is a cache?
§ An array of cache sets

¢ What is a cache set?
§ An array of cache lines

¢ What is a cache line?
§ Valid bit, tag, block
§ Note that we are only simulating a cache in Lab 5, so we don’t need to

represent the actual data blocks
§ Might need a little extra info to implement LRU
§ Probably want a struct to keep track of this!

Set 0
Set 1
Set 2
Set 3

Line 0
Line 1

Line 0
Line 1

Line 0
Line 1

Line 0
Line 1

cache

4

More Lab 5 Hints

¢ What is a cache?
§ An array of cache sets
§ cache = malloc(S * sizeof(cache set))

¢ What is a cache set?
§ An array of cache lines
§ cache[i] = malloc(E * sizeof(cache line))

¢ What is a cache line?
§ Valid bit, tag, block
§ Note that we are only simulating a cache in Lab 5, so we don’t need to

represent the actual data blocks
§ Might need a little extra info to implement LRU
§ Probably want a struct to keep track of this!

cache[0]

Set 1
Set 2
Set 3

cache[0][0]
Line 1

cache
Line 0
Line 1

Line 0
Line 1

Line 0
Line 1

5

Last time

¢ Cache organization and operation (Ch 6.4)
§ Cache hits and misses

6

Today – Moving on to Ch 9

¢ Wrap up discussion about caches (Ch 6.5-6.7)
§ Write-through + No-write-allocate
§ Write-back + Write-allocate (most inline with current trends)
§ Cache performance

¢ Intro to address spaces (Ch 9.2)
¢ VM as a tool for caching (Ch 9.3)

7

Recap: Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
•Match + line valid: hit
• Locate data starting

at offset

8

Why Index Using Middle Bits?

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

t bits 0…01 100
Address of int:

find set

Standard Method:
Middle bit set indexing

t bits1…11 100
Address of int:

find set

Alternative Method:
High bit set indexing

9

Illustration of Indexing
Approaches
¢ 64-byte memory
§ 6-bit addresses (26=64)

¢ 16 byte, direct-mapped cache
¢ Block size = 4 bytes
¢ 2 bits tag, 2 bits index, 2 bits offset

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Cache

Memory

10

Middle Bit Indexing

¢ Addresses of form TTSSBB
§ TT Tag bits
§ SS Set index bits
§ BB Offset bits

¢ Makes good use of spatial locality

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Set 0

Set 1

Set 2

Set 3

Cache

Memory

11

High Bit Indexing

¢ Addresses of form SSTTBB
§ SS Set index bits
§ TT Tag bits
§ BB Offset bits

¢ Program with high spatial locality
would generate lots of conflicts

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Cache

Memory

12

What about writes?
¢ Multiple copies of data (potentially) exist:
§ L1, L2, L3, Main Memory, Disk

¢ What to do on a write-hit?
§ Write-through (write immediately to main memory)
§ Write-back (defer write to main memory until replacement of line in cache)

§ Need a “dirty bit” in cache (is the line different from memory or not)

¢ What to do on a write-miss?
§ Write-allocate (load into cache, update line in cache)

§ Good if more writes to the location follow
§ No-write-allocate (writes straight to memory, does not load into cache)

¢ Typical
§ Write-through + No-write-allocate
§ Write-back + Write-allocate (most inline with current trends)

13

Real Example: Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

14

Example: Core i7 L1 Data Cache

B =
S = , s =
E = , e =
C =

Block offset: . bits
Set index: . bits
Tag: . bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x??
Set index: 0x??
Tag: 0x??

32 kB 8-way set associative
64 bytes/block
47 bit address range

15

Example: Core i7 L1 Data Cache

B = 64
S = 64, s = 6
E = 8, e = 3
C = 64 x 64 x 8 = 32,768

Block offset: 6 bits
Set index: 6 bits
Tag: 35 bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x10
Set index: 0x0
Tag: 0x7f7262a1e

32 kB 8-way set associative
64 bytes/block
47 bit address range

0000 0001 0000

16

Cache Performance Metrics
¢ Miss Rate

§ Fraction of memory references not found in cache (misses / accesses)
= 1 – hit rate

§ Typical numbers (in percentages):
§ 3-10% for L1
§ can be quite small (e.g., < 1%) for L2, depending on size, etc.

¢ Hit Time
§ Time to deliver a line in the cache to the processor

§ includes time to determine whether the line is in the cache
§ Typical numbers:

§ 4 clock cycles for L1
§ 10 clock cycles for L2

¢ Miss Penalty
§ Additional time required because of a miss

§ Typically 50-200 cycles for main memory (Trend: increasing!)

17

Let’s think about those numbers
¢ Huge difference between a hit and a miss

§ Could be 100x, if just L1 and main memory

¢ Would you believe 99% hits is twice as good as 97%?
§ Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

§ Average access time:
 97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
 99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

¢ This is why “miss rate” is used instead of “hit rate”

18

Writing Cache Friendly Code

¢ Make the common case go fast
§ Focus on the inner loops of the core functions

¢ Minimize the misses in the inner loops
§ Repeated references to variables are good (temporal locality)
§ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

👍

19

The Memory Mountain

¢ Read throughput (read bandwidth)
§ Number of bytes read from memory per second (MB/s)

¢ Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
§ Compact way to characterize memory system performance.
§ Can make some pretty pictures, too.

21

128m
32m

8m
2m

512k
128k

32k
0

4000

8000

12000

16000

20000

24000

28000

32000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

The Memory Mountain

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

22

Moving on to Ch 9…
Hmmm, How Does This Work?!

Process 1 Process 2 Process n

Solution: Virtual Memory (next topic…big part of OS, too)

23

A System Using Physical Addressing

¢ Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

24

A System Using Virtual Addressing

¢ Used in all modern servers, laptops, PCs, and smart phones
¢ One of the great ideas in computer science->use indirection!

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

25

Address Spaces

¢ Linear address space: Ordered set of contiguous non-
negative integer addresses (we always assume this):
 {0, 1, 2, 3 … }

¢ Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

¢ Physical address space: Set of M = 2m physical
addresses
 {0, 1, 2, 3, …, M-1}

26

Why Virtual Memory (VM)?
¢ Uses main memory efficiently
§ Use DRAM as a cache for parts of a virtual address space

¢ Simplifies memory management
§ Each process gets the same uniform linear address space

¢ Isolates address spaces
§ One process can’t interfere with another’s memory
§ User program cannot access privileged kernel information and

code

27

VM as a Tool for Caching

¢ Conceptually, virtual memory is an array of N contiguous
bytes stored on disk (we’ve moved down in the hierarchy!)

¢ The contents of the array on disk are cached in physical
memory (DRAM cache)
§ The cache blocks in this context are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

