
1

Memory Hierarchy and Intro to Caching

CSCI 237: Computer Organization
22nd Lecture, Apr 14, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details

¢ Lab 4 – Bitmap
§ Due Tue/Wed

¢ Lab 5 – Cache simulator
§ Read Ch 6.4 before lab! (FYI: I need to proofread it)
§ Submit partner form

¢ Glow HW
§ Due Friday at noon
§ Practice problems mostly related to caching (and one pipeline)

¢ TA eval form and apps due this week

3

Last time

¢ Storage technologies and trends (Ch 6.1)
§ Memory technologies
§ Disk storage
§ Solid state disks

4

Today

¢ Locality of reference (Ch 6.2)
¢ The memory hierarchy (Ch 6.3)
¢ Cache memory organization and operation (Ch 6.4)

5

Problem: The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

6

Locality to the Rescue!

¢ Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

¢ Temporal locality:
§Recently referenced items are likely

to be referenced again in the near future

¢ Spatial locality:
§ Items with nearby addresses tend

to be referenced close together in time

7

Qualitative Estimates of Locality

¢ Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

¢ Question: Does this function have good locality with
respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

Yes!

8

Locality Example

¢ Question: Does this function have good locality with
respect to array a?

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

No!

9

Locality Example
¢ Question: Can you permute the loops so that the

function scans the 3D array a with a stride-1 reference
pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{
 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < M; k++)
 sum += a[k][i][j];
 return sum;
}

10

Locality Example
¢ Question: Can you permute the loops so that the

function scans the 3D array a with a stride-1 reference
pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{
 int i, j, k, sum = 0;

 for (k = 0; k < M; k++)
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 sum += a[k][i][j];
 return sum;
}

Rightmost
indices
should
change
“most
rapidly”

11

Memory Hierarchies

¢ Some fundamental and enduring properties of
hardware and software:
§ Fast storage technologies cost more per byte, have less

capacity, and require more power (heat!).
§ The gap between CPU and main memory speed is widening.
§ Well-written programs tend to exhibit good locality.

¢ These fundamental properties complement each other.
¢ They suggest an approach for organizing memory and

storage systems known as a memory hierarchy.

12

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
($ per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
more expensive
($ per byte)
storage
devices L3 cache

(SRAM) L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

13

Another Example Memory Hierarchy

14

15

Caches
¢ Cache (pronounced “cash”): A smaller, faster storage device that

acts as a staging area for a subset of the data in a larger, slower
device.

¢ Fundamental idea of a memory hierarchy:
§ For each k, the faster, smaller device at level Lk serves as a cache for the

larger, slower device at level Lk+1.

¢ Why do memory hierarchies work?
§ Because of locality, programs tend to access the data at level Lk more often

than they access the data at level Lk+1.
§ The storage at level Lk+1 can be slower, and thus larger and cheaper per bit.

¢ Big Idea: The memory hierarchy creates a large pool of storage that
costs as much as the cheap storage near the bottom, but that
serves data to programs at the rate of the fast storage near the top.

16

Cache Memories
¢ Cache memories are small, fast SRAM-based memories

managed automatically in hardware
§ Hold frequently accessed blocks of main memory
§ Part of CPU chip

¢ CPU looks first for data in cache
¢ Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memory

17

What it Really Looks Like

Source: Dell

Desktop PC

Source: Dell

Motherboard Source: Dell

Main memory (DRAM)

Source: PC Magazine

Source: techreport.com

CPU (Intel Core i7)

18

What it Really Looks Like (Cont.)

Intel Sandy Bridge (e.g., all
Intel Core processors)
Processor Die

L1: 32KB Instr + 32KB Data (per core)
L2: 256KB (per core)
L3: 3–20MB (MUCH bigger and
shared)

All L3 cache
shared among all

cores
on many

processors

20

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

21

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

22

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
•Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (called the victim)

23

General Caching Concepts:
Types of Cache Misses

¢ Cold (compulsory) miss
§ Cold misses occur because the cache is empty.

¢ Conflict miss
§ Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of

the block positions at level k.
§ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

§ Conflict misses occur when the level k cache is large enough, but multiple data
objects all map to the same level k block.
§ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

¢ Capacity miss
§ Occurs when the set of active cache blocks (working set) is larger than the cache.

25

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit

26

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

27

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

28

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

29

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

If tag doesn’t match: old line is evicted and replaced

30

Direct-Mapped Cache Simulation
M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
valid Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

