
1

Pipelined Y86-64 Wrapup

CSCI 237: Computer Organization
20th Lecture, Apr 9, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details

¢ Lab 4 today/tomorrow
§ C programming!
§ Due next Tue/Wed

¢ No Glow HW this week
§ Finish Lab 4 instead

3

Midterm

¢ Avg and median grade: 86%
§ Great job!
§ This is a little higher than usual

¢ Look it over (it will be waiting for you outside) and come see me if
you’d like to discuss anything

¢ General observations:
§ Conditional moves are ”better” when extra computations are fast, easy, and safe
§ Using () in x86 instructions:

§ Like a pointer in C
§ But not all instructions support using ()
§ Often have to use move to put value in register first

§ Arrays are allocated contiguously

4

Last time

¢ General principles of pipelining (Ch 4.4)
§ Goals
§ Difficulties

¢ Creating a pipelined Y86-64 processor (Ch 4.5)
§ Rearranging SEQ
§ Inserting pipeline registers
§ Problems with data and control hazards

5

Recap: Pipeline Stages
¢ Fetch
§ Select current PC
§ Read instruction
§ Compute incremented PC

¢ Decode
§ Read program registers

¢ Execute
§ Operate ALU

¢ Memory
§ Read or write data memory

¢ Write Back
§ Update register file

6

Recap:
PIPE- Hardware
¢ Pipeline registers hold

intermediate values from
instruction execution

¢ Forward (Upward) Paths
§ Values passed from one stage

to next
§ Cannot jump past stages

§ e.g., valC passes through
decode

7

Today
Make the pipelined processor really work (mostly)!
¢ Data Hazards

§ Instruction having register R as source follows shortly after instruction
having register R as destination

§ Common condition, don’t want to slow down pipeline
§ Stalling, bubbling, data forwarding

¢ Advanced pipelining concepts: NOT COVERED IN CLASS!
¢ (slides are included at the end of this lecture for reference)

§ Load/Use Data Hazard
§ Control Hazards

§ Mispredict conditional branch
§ Getting return address for ret instruction

§ Special Control Combinations

8

Pipeline Demonstration

irmovq $1,%rax #I1

1 2 3 4 5 6 7 8 9

F D E M
Wirmovq $2,%rcx #I2 F D E M

W

irmovq $3,%rdx #I3 F D E M W
irmovq $4,%rbx #I4 F D E M W
halt #I5 F D E M W

Cycle 5
W
I1

M
I2

E
I3

D
I4

F
I5

Instr 1

Time

9

Data Dependencies: No Nop
1 2 3 4 5 6 7 8

F D E M
WF D E M

W

F D E M W
F D E M W

E

D
valAfR[%rdx] = 0
valBfR[%rax] = 0

D
valAfR[%rdx] = 0
valBfR[%rax] = 0

Cycle 4

Error

M
M_valE= 10
M_dstE= %rdx

e_valEf0 + 3 = 3
E_dstE= %rax

0x000: irmovq $10,%rdx
 0x00a: irmovq $3,%rax
 0x014: addq %rdx,%rax
 0x016: halt

How can we avoid
these errors?

10

Data Dependencies: 1 Nop
1 2 3 4 5 6 7 8 9

F D E M
WF D E M

W

F D E M WF D E M W
F D E M WF D E M W

F D E M WF D E M W

W
R[%rdx] f10

W
R[%rdx] f10

D
valA fR[%rdx] = 0
valB fR[%rax] = 0

D
valA fR[%rdx] = 0
valB fR[%rax] = 0

•••

Cycle 5

M
M_valE = 3
M_dstE= %rax

0x000: irmovq $10,%rdx
 0x00a: irmovq $3,%rax
0x014: nop

 0x015: addq %rdx,%rax
 0x017: halt

How can we avoid
these errors?

Error

11

Data Dependencies: 2 Nop’s
1 2 3 4 5 6 7 8 9

F D E M WF D E M W
F D E M WF D E M W

F D E M WF D E M W
F D E M WF D E M W

F D E M WF D E M W
F D E M WF D E M W

10

W
R[%rax] f3

D
valA fR[%rdx] = 10
valB fR[%rax] = 0

•••

W
R[%rax] f3

W
R[%rax] f3

D
valA fR[%rdx] = 10
valB fR[%rax] = 0

D
valA fR[%rdx] = 10
valB fR[%rax] = 0

•••

Cycle 6

Error

0x000: irmovq $10,%rdx
 0x00a: irmovq $3,%rax
0x014: nop
0x015: nop

 0x016: addq %rdx,%rax
 0x018: halt

How can we avoid
these errors?

12

Dealing with Data Dependencies

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
F D E M WF D E M W

F D E M WF D E M W
F D E M WF D E M W

F D E M WF D E M W
F D E M WF D E M W

10
0x000: irmovq $10,%rdx

 0x00a: irmovq $3,%rax
 0x014: nop
 0x015: nop
 0x016: addq %rdx,%rax
 0x018: halt

§ If instruction follows too closely after one that writes register,
we need to slow it down

§ How?

13

Stalling for Data Dependencies

§ If instruction follows too closely after one that writes register,
we need to slow it down

§ Solution: Hold instruction in decode (stall the pipeline)
§ Dynamically inject nop into execute stage (bubble)

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W
0x00a: irmovq $3,%rax F D E M W
0x014: nop F D E M W

bubble

F
E M W

0x016: addq %rdx,%rax D D E M W
0x018: halt F D E M W

10

F

F D E M W0x015: nop

11

14

Stall Condition
¢ Source Registers

§ srcA and srcB of current instr in
decode stage

¢ Destination Registers
§ dstE and dstM fields
§ Instructions in execute, memory,

and write-back stages

¢ Special Case
§ Don’t stall for register ID 15 (0xF)

§ Indicates absence of register
operand

§ Or failed cond. move

15

Detecting Stall Condition

Cycle 6
W

D

•
•
•

W_dstE = %rax
W_valE = 3

srcA = %rdx
srcB = %rax

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W
0x00a: irmovq $3,%rax F D E M W
0x014: nop F D E M W

bubble

F
E M W

0x016: addq %rdx,%rax D D E M W
0x018: halt F D E M W

10

F

F D E M W0x015: nop

11

If source of instruction in
decode is same as destination
for instruction in execute,
memory, or write-back, we
must stall and bubble.

16

Stalling x3

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W
0x00a: irmovq $3,%rax F D E M W

bubble

F

E M W
bubble

D

E M W

0x014: addq %rdx,%rax D D E M W
0x016: halt F D E M W

10

F F
D
F

E M Wbubble

11

Cycle 4 •
•
•

W
W_dstE = %rax

D
srcA = %rdx
srcB = %rax

•
•
•

M
M_dstE = %rax

D
srcA = %rdx
srcB = %rax

E
e_dstE = %rax

D
srcA = %rdx
srcB = %rax

Cycle 5

Cycle 6

Stall

17

What Happens When Stalling?

§ Stalling instruction held back in decode stage
§ Following instruction stays in fetch stage
§Bubbles injected into execute stage

§ Like dynamically generated nop’s
§ Move through later stages

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax
0x014: addq %rdx,%rax

Cycle 4

0x016: halt

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax
0x014: addq %rdx,%rax
0x016: halt

Write Back
Memory
Execute
Decode

Fetch

18

What Happens When Stalling?

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax
0x014: addq %rdx,%rax
0x016: halt

Write Back
Memory
Execute
Decode

Fetch

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax

bubble
0x014: addq %rdx,%rax

Cycle 5

0x016: halt

§ Stalling instruction held back in decode stage
§ Following instruction stays in fetch stage
§Bubbles injected into execute stage

§ Like dynamically generated nop’s
§ Move through later stages

19

What Happens When Stalling?

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax
0x014: addq %rdx,%rax
0x016: halt

Write Back
Memory
Execute
Decode

Fetch

0x00a: irmovq $3,%rax
bubble

0x014: addq %rdx,%rax
bubble

Cycle 6

0x016: halt

§ Stalling instruction held back in decode stage
§ Following instruction stays in fetch stage
§Bubbles injected into execute stage

§ Like dynamically generated nop’s
§ Move through later stages

20

What Happens When Stalling?

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax
0x014: addq %rdx,%rax
0x016: halt

Write Back
Memory
Execute
Decode

Fetch

bubble
bubble

0x014: addq %rdx,%rax
bubble

Cycle 7

0x016: halt

§ Stalling instruction held back in decode stage
§ Following instruction stays in fetch stage
§Bubbles injected into execute stage

§ Like dynamically generated nop’s
§ Move through later stages

21

What Happens When Stalling?

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax
0x014: addq %rdx,%rax
0x016: halt

Write Back
Memory
Execute
Decode

Fetch

bubble
bubble

Cycle 8

0x014: addq %rdx,%rax
0x016: halt

§ Stalling instruction held back in decode stage
§ Following instruction stays in fetch stage
§Bubbles injected into execute stage

§ Like dynamically generated nop’s
§ Move through later stages

22

Implementing Stalling

¢ Pipeline Control
§ Combinational logic detects stall condition
§ Sets mode signals for how pipeline registers should update

Pipeline
control
logic

23

Pipeline Register Modes
Rising
clock
Rising
clock_ _

Output = y

yy

Rising
clock
Rising
clock_ _

Output = x

xx

xx
n
o
p

Rising
clock
Rising
clock_ _

Output = nop

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Output = xInput = y

stall
= 0

bubble
= 1

Bubble

24

Data Forwarding

¢ Naïve Pipeline
§ Register isn’t written until completion of write-back stage
§ Source operands read from register file in decode stage

§ Needs to be in register file at start of stage

¢ Observation
§ Desired value generated in execute or memory stage
§ Why wait for completion of write-back?

¢ Trick
§ Pass value directly from generating instruction to decode stage
§ Needs to be available at end of decode stage

25

Data Forwarding Example

§ irmovq in write-back stage
§ Destination value in W pipeline

register
§ Forward as valB for decode stage

1 2 3 4 5 6 7 8 9
F D E M WF D E M W

F D E M WF D E M W
F D E M WF D E M W

F D E M WF D E M W
F D E M WF D E M W

F D E M WF D E M W

10

Cycle 6

W
R[%rax] f3

D
valA fR[%rdx] = 10
valB fW_ valE = 3

•
•
•

W_ dstE = %rax
W_ valE = 3

srcA = %rdx
srcB = %rax

0x000: irmovq $10,%rdx
0x00a: irmovq $3,%rax
0x014: nop

0x016: addq %rdx,%rax
0x018: halt

0x015: nop

26

Bypass Paths
¢ Decode Stage
§ Forwarding logic selects

valA and valB
§ Normally from register file
§ Forwarding: get valA or

valB from later pipeline
stage

¢ Forwarding Sources
§ Execute: valE
§ Memory: valE, valM
§ Write back: valE, valM

27

Data Forwarding Example #2

¢ Register %rdx
§ Generated by ALU during

previous cycle
§ Forward from memory as valA

¢ Register %rax
§ Value just generated by ALU
§ Forward from execute as valB

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax
F D E M W0x016: halt

Cycle 4

M

D

valA f M_valE = 10
valB f e_valE = 3

M_dstE = %rdx
M_valE = 10

srcA = %rdx
srcB = %rax

E

E_dstE = %rax
e_valE f 0 + 3 = 3

28

¢ Multiple Forwarding
Choices
§ Which one should have

priority?
§ Match SEQ semantics
§ Use matching value from
earliest pipeline stage

0x000: irmovq $1, %rax

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $2, %rax F D E M WF D E M W
0x014: irmovq $3, %rax F D E M WF D E M W
0x01e: rrmovq %rax, %rdx F D E M WF D E M W
0x020: halt F D E M WF D E M W

10

W
R[%rax] f 3

W
R[%rax] f 1

D
valA fR[%rdx] = 10
valB fR[%rax] = 0

D
valA fR[%rdx] = 10
valB fR[

D
valA fR[%rax] = ?
valB f 0

Cycle 5

W
R[%rax] f 3

M
R[%rax] f 2

W
R[%rax] f 3

E
R[%rax] f 3

Forwarding Priority

29

Implementing
Forwarding

§ Add additional
feedback paths from E,
M, and W pipeline
registers into decode
stage

§ Create logic blocks to
select from multiple
sources for valA and
valB in decode stage

30

Implementing Forwarding
What should be the A value?
int d_valA = [
 # Use incremented PC
 D_icode in { ICALL, IJXX } : D_valP;
 # Forward valE from execute
 d_srcA == e_dstE : e_valE;
 # Forward valM from memory
 d_srcA == M_dstM : m_valM;
 # Forward valE from memory
 d_srcA == M_dstE : M_valE;
 # Forward valM from write back

d_srcA == W_dstM : W_valM;
 # Forward valE from write back
 d_srcA == W_dstE : W_valE;
 # Use value read from register file
 1 : d_rvalA;
];

31

PIPELINE COVERAGE STOPS HERE!

¢ Ch 4.5 includes additional details about pipelined processors
§ Load/use data hazards, control hazards, control combinations
§ All very interesting topics! But we are moving on.

¢ The following slides were not covered in class, but are left here
for your reference and to quench your curiosity J

¢ You will not be expected to know any of this material on any
future exams!

¢ We are leaving the processor and moving on to memory (Ch 6)! 🎉

32

Limitation of Forwarding:
Load/Use Data Hazard

¢ Load-use dependency
§ Value needed by end of

decode stage in cycle 7
§ Value read from memory in

memory stage of cycle 8

33

Avoiding Load/Use Hazard

§ Stall using instruction for one cycle
§ Can then pick up loaded value by

forwarding from memory stage

34

Detecting Load/Use Hazard

Condition Trigger

Load/Use Hazard E_icode in { IMRMOVQ, IPOPQ } &&
E_dstM in { d_srcA, d_srcB }

35

Control for Load/Use Hazard

§ Stall instructions in fetch and decode stages
§ Inject bubble into execute stage

0x000: irmovq $128,%rdx

1 2 3 4 5 6 7 8 9
F D E M

W
F D E M

W0x00a: irmovq $3,%rcx F D E M
W

F D E M
W

0x014: rmmovq %rcx, 0(%rdx) F D E M WF D E M W
0x01e: irmovq $10,%ebx F D E M WF D E M W
0x028: mrmovq 0(%rdx),%rax # Load %rax F D E M WF D E M W

demo-luh.ys

0x032: addq %ebx,%rax # Use % rax

0x034: halt

F D E M W
E M W

10

D D E M W

11

bubble

F D E M W
F

F

12

Condition F D E M W

Load/Use Hazard stall stall bubble normal normal

36

Control Hazard: Branch Mispredictions

§ Should only execute first 7 instructions

0x000: xorq %rax,%rax
0x002: jne t # Not taken
0x00b: irmovq $1, %rax # Fall through
0x015: nop
0x016: nop
0x017: nop
0x018: halt
0x019: t: irmovq $2, %rdx # Target
0x023: irmovq $3, %rcx # Should not execute
0x02d: irmovq $4, %rdx # Should not execute

37

Branch Misprediction Trace

n Incorrectly execute two instructions at
branch target

1 2 3 4 5 6 7 8 9

F D E M
WF D E M

W

F D E M W
F D E M W

F D E M W

demo-j.ys

F D E M W

Cycle 5

E
valE f3
dstE = %rdx

E
valE f3
dstE = %rdx

M
M_Cnd = 0
M_valA= 0x007

D
valC= 4
dstE= %ecx

D
valC= 4
dstE= %rcx

F
valCf 1
rBf %rax

F
valCf 1
rBf %rax

0x000: xorq %rax,%rax
 0x002: jne t # Not taken
 0x019: t: irmovq $2, %rdx # Target
 0x023: irmovq $3, %rcx # Target + 1
 0x00b: irmovq $1, %rax # Fall through

38

Handling Misprediction

¢ Predict branch as taken
§ Fetch 2 instructions at target

¢ Cancel when mispredicted
§ Detect branch not-taken in execute stage
§ On following cycle, replace instructions in execute and decode by bubbles
§ No side effects have occurred yet

39

Detecting Mispredicted Branch

Condition Trigger

Mispredicted Branch E_icode = IJXX & !e_Cnd

40

Control for Misprediction

Condition F D E M W

Mispredicted Branch normal bubble bubble normal normal

41

0x000: irmovq Stack,%rsp # Intialize stack pointer
0x00a: call p # Procedure call
0x013: irmovq $5,%rsi # Return point
0x01d: halt
0x020: .pos 0x20
0x020: p: irmovq $-1,%rdi # procedure
0x02a: ret
0x02b: irmovq $1,%rax # Should not be executed
0x035: irmovq $2,%rcx # Should not be executed
0x03f: irmovq $3,%rdx # Should not be executed
0x049: irmovq $4,%rbx # Should not be executed
0x100: .pos 0x100
0x100: Stack: # Stack: Stack pointer

Control Hazard: Dealing with Returns

§ Pipeline will execute three additional instructions past ret

42

Incorrect Return Example

n Incorrectly execute 3 instructions
following ret

43

0x026: ret F D E M
Wbubble D E M

W

bubble D E M W
bubble D E M W

0x013: irmovq $5,%rsi # Return F D E M W

demo- retb

F D E M W

F
valC f 5
rB f % esi

F
valC f 5
rB f %rsi

W

valM = 0x0b

W

valM = 0x013

•
•
•

Correct Return Example

¢ As ret passes through pipeline,
stall at fetch stage
§ While in decode, execute, and

memory stage

¢ Inject bubble into decode stage
¢ Release stall when reach write-

back stage

44

Detecting Return

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

45

0x026: ret F D E M
Wbubble D E M

W

bubble D E M W
bubble D E M W

0x014: irmovq $5,%rsi # Return F D E M W

demo-retb

F D E M W

Control for Return

Condition F D E M W

Processing ret stall bubble normal normal normal

46

Special Control Cases
¢ Detection

¢ Action (on next cycle)

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

Load/Use Hazard E_icode in { IMRMOVQ, IPOPQ } &&
E_dstM in { d_srcA, d_srcB }

Mispredicted Branch E_icode = IJXX & !e_Cnd

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Mispredicted Branch normal bubble bubble normal normal

47

Implementing Pipeline Control

§ Combinational logic generates pipeline control signals
§ Action occurs at start of following cycle

48

Initial (Buggy) Version of Pipeline Control
bool F_stall =
 # Conditions for a load/use hazard
 E_icode in { IMRMOVQ, IPOPQ } && E_dstM in { d_srcA, d_srcB } ||
 # Stalling at fetch while ret passes through pipeline
 IRET in { D_icode, E_icode, M_icode };

bool D_stall =
 # Conditions for a load/use hazard
 E_icode in { IMRMOVQ, IPOPQ } && E_dstM in { d_srcA, d_srcB };

bool D_bubble =
 # Mispredicted branch
 (E_icode == IJXX && !e_Cnd) ||
 # Stalling at fetch while ret passes through pipeline
 IRET in { D_icode, E_icode, M_icode };

bool E_bubble =
 # Mispredicted branch
 (E_icode == IJXX && !e_Cnd) ||
 # Load/use hazard
 E_icode in { IMRMOVQ, IPOPQ } && E_dstM in { d_srcA, d_srcB };

49

Control Combinations

¢ Special cases that can arise on same clock cycle
¢ Combination A

§ Not-taken branch
§ ret instruction at branch target

¢ Combination B
§ Instruction that reads from memory to %rsp
§ Followed by ret instruction

LoadE
UseD

M

Load/use

JXXE
D

M

Mispredict

JXXE
D

M

Mispredict

E
retD

M

ret 1

retE
bubbleD

M

ret 2

bubbleE
bubbleD

retM

ret 3

E
retD

M

ret 1

E
retD

M

ret 1

retE
bubbleD

M

ret 2

retE
bubbleD

M

ret 2

bubbleE
bubbleD

retM

ret 3

bubbleE
bubbleD

retM

ret 3

Combination B

Combination A

50

Control Combination A

§ Should handle as mispredicted branch
§ Stalls F pipeline register
§ But PC selection logic will be using M_valM anyway

JXXE
D

M

Mispredict

JXXE
D

M

Mispredict

E
retD

M

ret 1

E
retD

M

ret 1

E
retD

M

ret 1

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal

Mispredicted Branch normal bubble bubble normal normal

Combination stall bubble bubble normal normal

51

Control Combination B

§Would attempt to bubble and stall pipeline register D
§ Signaled by processor as pipeline error

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall bubble +
stall

bubble normal normal

LoadE
UseD

M

Load/use

E
retD

M

ret 1

retret
Combination B

52

Handling Control Combination B

§ Load/use hazard should get priority
§ ret instruction should be held in decode stage for additional cycle

LoadE
UseD

M

Load/use

E
retD

M

ret 1

retret
Combination B

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

53

Corrected Pipeline Control Logic

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

bool D_bubble =
 # Mispredicted branch
 (E_icode == IJXX && !e_Cnd) ||
 # Stalling at fetch while ret passes through pipeline
 IRET in { D_icode, E_icode, M_icode }
 # but not condition for a load/use hazard
 && !(E_icode in { IMRMOVQ, IPOPQ }

&& E_dstM in { d_srcA, d_srcB });

§ Load/use hazard should get priority
§ ret instruction should be held in decode stage for additional cycle

54

Pipeline Summary

¢ Data Hazards
§ Most handled by forwarding

§ No performance penalty
§ Load/use hazard requires one cycle stall

¢ Control Hazards
§ Cancel instructions when detect mispredicted branch

§ Two clock cycles wasted
§ Stall fetch stage while ret passes through pipeline

§ Three clock cycles wasted

¢ Control Combinations
§ Must analyze carefully
§ First version had subtle bug

§ Only arises with unusual instruction combinations

