
1

Bits, Bytes, and Integers

CSCI 237: Computer Organization
2nd Lecture, Feb 10, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition



2

Administrative Details

¢ TA hours will start this week
¢ Navigating the course webpage 
¢ Lab on Wed/Thur
§ You need a CS account – should have received an email from Lida
§ Let me know if not!

¢ Please read through lab and prelab in advance!
§ Lab will be posted on webpage by tomorrow (at the latest)

¢ I’ll talk a bit more about lab logistics on Wed/Thur
¢ Office hours this week: Wed 9-10:30
§ Regular schedule coming soon!



3

Last Time

¢ Five realities
¢ Course logistics and overview
§ Any questions?



4

This week: Bits, Bytes, and Integers (Ch 2)

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings



5

Everything is bits!

¢ Each bit is 0 or 1
¢ By encoding/interpreting sets of bits in various ways
§ Computers determine what to do (instructions)
§ … and represent and manipulate numbers, sets, strings, etc…

¢ Why bits?  Electronic implementation
§ Easy to store with bistable elements
§ Reliably transmitted on noisy and inaccurate wires 

0.0V
0.2V

0.9V
1.1V

0 1 0



6

Counting in Binary

¢ Base 2 Number Representation
§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104  as 1.11011011011012 X 213

¢ How do we convert binary to decimal?
¢ Recall that decimal is base 10 
§ 41710 è 4 x 102 + 1  x 101 + 7 x 100

¢ Binary is the same using base 2
§ 1102 è 1 x 22 + 1  x 21 + 0 x 20  = 610



7

Counting in Binary

¢ Base 2 Number Representation
§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104  as 1.11011011011012 X 213

¢ How do we convert binary to decimal?
111011011011012 =
  1x213 + 1x212 + 1x211 + 0x210 + 1x29 + 1x28 + 0x27 
+ 1x26 + 1x25 + 0x24 + 1x23 + 1x22 + 0x21 + 1x20 =

  8192 + 4096 + 2048  + 0   + 512  + 256  + 0    
+ 64   + 32   +  0    + 8    + 4   + 0    + 1   =
  
15213



8

Counting in Binary

¢ Base 2 Number Representation
§ Represent 1521310 as 111011011011012

§ Represent 1.2010 as 1.0011001100110011[0011]…2

§ Represent 1.5213 X 104  as 1.11011011011012 X 213

¢ How do we convert decimal to binary?

15213 / 2 = 7606 r1
7606 / 2 = 3803 r0
3803 / 2 = 1901 r1
1901 / 2 = 950  r1

950 / 2 = 475  r0
475 / 2 = 237  r1
237 / 2 = 118  r1
118 / 2 = 59  r0

 
59 / 2 = 29  r1
29 / 2 = 14  r1
14 / 2 = 7  r0
7 / 2 = 3  r1

3 / 2 = 1  r1
1 / 2 = 0  r1



9

Counting in Binary

¢ What about decimal values?
¢ 1.210  è 1.001100110011001100110011001100110011001102

.2 × 2 = .4 r0

.4 × 2 = .8 r0

.8 × 2 = 1.6 r1

.6 × 2 = 1.2 r1

.2 × 2 = .4 r0

.4 × 2 = .8 r0

.8 × 2 = 1.6 r1

.6 × 2 = 1.2 r1

  .
  .
  .



10

Counting in Binary

¢ 1.2210è    1.001110000101000111101011100001010001111012

.22 × 2 = .44 r0

.44 × 2 = .88 r0

.88 × 2 = 1.76 r1

.76 × 2 = 1.52 r1

.52 × 2 = 1.04 r1

.04 × 2 = .08 r0

.08 × 2 = .16 r0

.16 × 2 = .32 r0

.32 × 2 = .64 r0

.64 × 2 = 1.28 r1

.28 × 2 = .56 r0

.56 × 2 = 1.12 r1

.12 × 2 = .24 r0

.24 × 2 = .48 r0

.48 × 2 = .96 r0

.96 × 2 = 1.92 r1

.92 × 2 = 1.84 r1

.84 × 2 = 1.68 r1

.68 × 2 = 1.36 r1

.36 × 2 = .72 r0

.72 × 2 = 1.44 r1

.44 × 2 = .88 r0



11

Encoding Byte Values

¢ 1 Byte = 8 bits
§ Binary (base 2): 000000002 to 111111112

§ Decimal (base 10): 010 to 25510

§ Hexadecimal (base 16): 0016 to FF16

§ Base 16 number representation
§ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
§ Write FA1D37B16 in C as

– 0xFA1D37B or 0xfa1d37b 

¢ Hexadecimal to decimal
§ 9BD16 è 9 x 162 + 11 x 161 + 13 x 160 

= 249310

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary



12

Encoding Byte Values

¢ 1 Byte = 8 bits
§ Binary (base 2): 000000002 to 111111112

§ Decimal (base 10): 010 to 25510

§ Hexadecimal (base 16): 0016 to FF16

§ Base 16 number representation
§ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
§ Write FA1D37B16 in C as

– 0xFA1D37B or 0xfa1d37b 

¢ Binary to hexadecimal:
§ 1521310 = 111011011011012 = ?? 16

   11 1011 0110 11012
 0011 1011 0110 11012
   3    B    6    D
 = 0x3B6D or 3B6D16
 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary



13

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

long double − − 10/16

pointer 4 8 8

(number of bytes)



14

Bits, Bytes, and Integers

¢ Representing information as bits
¢ Bit-level manipulations
¢ Integers
§ Representation: unsigned and signed
§ Conversion, casting
§ Expanding, truncating
§ Addition, negation, multiplication, shifting
§ Summary

¢ Representations in memory, pointers, strings



15

Boolean Algebra (Ch 2.1.6)

¢ Developed by George Boole in 19th Century
§ Algebraic representation of logic

§ Encode “True” as 1 and “False” as 0

And
n A&B = 1 when both A=1 and B=1

Or
n A|B = 1 when either A=1 or B=1

Not
n ~A = 1 when A=0

Exclusive-Or (Xor)
n A^B = 1 when either A=1 or B=1, but not both



16

General Boolean Algebras

¢ Operate on Bit Vectors
§ Operations applied bitwise

¢ All of the Properties of Boolean Algebra Apply

01101001
& 01010101
  01000001

01101001
| 01010101
  01111101

01101001
^ 01010101
  00111100

~ 01010101
  1010101001000001 01111101 00111100 10101010



17

Example: Representing & Manipulating Sets

¢ Representation
§ Width w bit vector represents subsets of {0, …, w–1}
§ aj = 1 if j  ∈ A

§  01101001 { 0, 3, 5, 6 } = A
§  76543210

§  01010101 { 0, 2, 4, 6 } = B
§  76543210

¢ Operations
§ &    Intersection  A & B =01000001  { 0, 6 }
§ |     Union   A | B = 01111101  { 0, 2, 3, 4, 5, 6 }
§ ^ Symmetric difference A ^ B = 00111100  { 2, 3, 4, 5 }
§ ~ Complement  ~B = 10101010  { 1, 3, 5, 7 }



18

Bit-Level Operations in C (Lab 1!)

¢ Operations &,  |,  ~,  ^ available in C
§ Apply to any “integral” data type

§ long, int, short, char, unsigned
§ View arguments as bit vectors
§ Arguments applied bit-wise

¢ Examples (char data type)
§ ~0x41 ➙ 0xBE

§ ~010000012 ➙ 101111102
§ ~0x00 ➙ 0xFF

§ ~000000002 ➙ 111111112
§ 0x69 & 0x55 ➙ 0x41

§ 011010012 & 010101012 ➙ 010000012
§ 0x69 | 0x55 ➙ 0x7D

§ 011010012 | 010101012 ➙ 011111012



19

Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41  ➙  0x00
§ !0x00  ➙  0x01
§ !!0x41  ➙  0x01

§ 0x69 && 0x55  ➙  0x01
§ 0x69 || 0x55  ➙  0x01



20

Contrast: Logic Operations in C

¢ Contrast to Logical Operators
§ &&, ||, !

§ View 0 as “False”
§ Anything nonzero as “True”
§ Always return 0 or 1
§ Early termination

¢ Examples (char data type)
§ !0x41  ➙  0x00
§ !0x00  ➙  0x01
§ !!0x41  ➙  0x01

§ 0x69 && 0x55  ➙  0x01
§ 0x69 || 0x55  ➙  0x01

Watch out for && vs & (and || vs |)… 

One of the more common mistakes in 
beginner C programming!



21

Shift Operations

¢ Left Shift: x << y
§ Shift bit-vector x left y positions

– Throw away extra bits on left
§ Fill with 0’s on right

¢ Right Shift: x >> y
§ Shift bit-vector x right y positions

§ Throw away extra bits on right
§ Logical shift

§ Fill with 0’s on left
§ Arithmetic shift

§ Replicate most significant bit on left

¢ Undefined Behavior
§ Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000



22

Extra Practice

¢ Convert the following decimal number to binary
§ 27

¢ Convert the following binary number to decimal
§ 11001011

¢ Convert the following binary number to hexadecimal
§ 1011101

¢ Convert the following decimal number to hexadecimal
§ 93



23

Extra Practice

¢ Convert the following decimal number to binary
§ 2710 = 110112

¢ Convert the following binary number to decimal
§ 110010112 = 20310

¢ Convert the following binary number to hexadecimal
§ 10111012 = 0x5D

¢ Convert the following decimal number to hexadecimal
§ 9310 = 0x5D


