
1

Sequential Y86-64 Implementations

CSCI 237: Computer Organization
16th Lecture, Mar 17, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details
¢ Lab 3
§ Due this week (submit using submit237 3 files)

¢ Midterm details
§ This week during lab; closed book/notes; you can have a calculator
§ Focuses on Chapters 1-4 and Labs 1, 2, and 3

§ Emphasis on Ch 2-3, Labs 1-2, a little bit on Y86-64 (Lab 3) and Ch 4
§ Sample exams posted on webpage

¢ No class on Wed
§ I’ll be in my office from 9:30-12 if you have questions

¢ Office hours: today 2:00-3:00, tomorrow 1:30-3:00
¢ Review session Tue 8pm in TPL 205
¢ We have class on Friday (but no office hours in the afternoon)
§ I will post the slides (as always) if you will miss

3

Review: CMPX and JXX

¢ cmpq computes the difference between two integer operands
and updates the OF, SF, ZF, and CF flags according to the result
§ cmpq ra, rb computes rb-ra and sets flags (condition codes)

¢ Conditional jump or move happens based on condition codes
¢ Example: jle jumps if ZF or (OF xor SF)
§ ZF handles the equals case
§ OF xor SF being set indicates that rb was less than ra in previous operation
§ So it jumps if rb <= ra

¢ In general,
§ cmpq ra, rb
§ jOP jumps if rb OP ra

¢ In Y86, subX is the same as cmpX, andX is the same as testX

4

Review: CMPX and JXX

int test(long x, long y) {
 if (x < y)
 return 0;
 else
 return 1;
}

test:
 cmpq %rsi, %rdi # y:x
 jge .L3 # x>=y
 movl $0, %eax
 ret
.L3: # else
 movl $1, %eax
 ret

• cmpq ra, rb
• jOP jumps if rb OP ra

5

Review: CMPX and JXX

int test(long x, long y) {
 if (x >= y)
 return 0;
 else
 return 1;
}

test:
 cmpq %rsi, %rdi # y:x
 jl .L3 # x<y
 movl $0, %eax
 ret
.L3: # else
 movl $1, %eax
 ret

• cmpq ra, rb
• jOP jumps if rb OP ra

6

Review: CMPX and JXX

int test(long x) {
 if (x > 5)
 return 0;
 else
 return 1;
}

test:
 cmpq $5, %rdi # 5:x
 jle .L3 # x<=5
 movl $0, %eax
 ret
.L3: # else
 movl $1, %eax
 ret

• cmpq ra, rb
• jOP jumps if rb OP ra

7

Last Time

¢ Discussed combinational circuits
¢ Learned about HCL
¢ Overview of memory and clocking

8

Recap: HCL Summary

¢ Book introduces a very simple hardware description language
¢ Can only express limited aspects of hardware operation
¢ Data Types
§ bool: Boolean

§ a, b, c, …
§ int: words

§ A, B, C, …
§ Does not specify word size—64-bit words, …

¢ Statements
§ bool a = bool-expr ;
§ int A = int-expr ;

9

Recap: HCL Operations
¢ Classify by type of value returned
¢ Boolean Expressions
§ Logic Operations

§ a && b, a || b, !a
§ Word Comparisons

§ A == B, A != B, A < B, A <= B, A >= B, A > B
§ Set Membership

§ A in { B, C, D }
– Same as A == B || A == C || A == D

¢ Word Expressions
§ Case expressions

§ [a : A; b : B; c : C]
§ Evaluate test expressions a, b, c, … in sequence
§ Return word expression A, B, C, … for first successful test

10

Today

¢ Finish up Ch 4.2
¢ Move on to sequential Y86-64 implementations (Ch 4.3)
§ Organizing Processes into stages
§ SEQ Hardware Structure
§ SEQ Stage Implementations
§ SEQ Timing

11

Recap: Hardware Registers

§ Stores word of data
§ Different from program registers seen in assembly code (e.g., %rdi)
§ Collection of edge-triggered latches
§ Loads input on rising edge of clock

Structure

I O

Clock

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7
o6
o5
o4
o3
o2
o1
o0

Clock

12

Random-Access Memory

§ Stores multiple words of memory (has internal storage)
§ Address input specifies which word to read or write

§ Register file
§ Holds values of program registers (%rax, %rsp, etc.)
§ Register identifier serves as address

– ID 15 (0xF) implies no read or write performed
§ Multiple Ports

§ Can read and/or write multiple words in one cycle
– Each has separate address and data input/output

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW
Read
ports

Write port

Clock

13

Register File Timing
¢ Reading
§ Like combinational logic
§ Output data generated based on input addr

§ After some small delay

¢ Writing
§ Like hardware register wrt timing
§ Update only as clock rises

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file W dstW

valW

Clock

x2
Rising
clock_ _ Register

file W dstW

valW

Clock

y2

x2

x
2

Clock

14

Ch 4.2 Summary
¢ Computation
§ Performed by combinational logic
§ Computes Boolean functions
§ Continuously reacts to input changes

¢ Storage
§ Registers (hardware)

§ Hold single words
§ Loaded as clock rises

§ Random-access memories
§ Hold multiple words
§ Possible multiple read or write ports
§ Read word when address input changes
§ Write word as clock rises

15

Moving on to Ch 4.3:
SEQ Hardware Structure
¢ State (red boxes)
§ Program counter register (PC)
§ Condition code register (CC)
§ Register File
§ Memories

§ Access same memory space
§ Data: for reading/writing program data
§ Instruction: for reading instructions

¢ Instruction Flow (arrows)
§ Read instruction at address

specified by PC
§ Process through stages
§ Update program counter

Instruction
memory

Instruction
Memory PCPC

incr

CCCC ALUALU

Data
memory
Data

memory

Fetch

Decode

Execute

Memory

Write back

Register
file

Register
file

A B M

E
Register

file
Register
file

A B M

E

PC

valP

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC update
valE, valM

newPC

icode, ifun
rA, rB

valC

srcA, srcB
dstA, dstB

16

SEQ Stages

¢ Fetch
§ Read instruction from instr memory

¢ Decode
§ Read program registers from instr

¢ Execute
§ Compute value or address

¢ Memory
§ Read or write data

¢ Write Back
§ Write program registers to register file

¢ PC update
§ Update program counter

Instruction
memory

Instruction
Memory PCPC

incr

CCCC ALUALU

Data
memory
Data

memory

Fetch

Decode

Execute

Memory

Write back

Register
file

Register
file

A B M

E
Register

file
Register
file

A B M

E

PC

valP

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC update
valE, valM

newPC

icode, ifun
rA, rB

valC

srcA, srcB
dstA, dstB

17

Instruction Decoding

¢ Instruction Format
§ Instruction byte icode:ifun
§ Optional register byte rA:rB
§ Optional constant word valC

5 0 rA rB D

icode
ifun
rA
rB

valC

Optional Optional

18

Executing Arithmetic/Logical Operation

¢Fetch
§ Read 2 bytes

¢Decode
§ Read operand registers

¢Execute
§ Perform operation
§ Set condition codes

¢Memory
§ Do nothing

¢Write back
§ Update register rB

¢PC Update
§ Increment PC by 2 bytes

OPq rA, rB 6 fn rArB

19

Stage Computation: Arith/Log Ops

§ Formulate instruction execution as sequence of simple steps
§ Use same general form for all instructions
§ Note: M1 indicates we’re accessing 1 byte of memory (usually instruction

memory), while M8 indicates we’re accessing 8 bytes (usually data memory)

OPq rA, rB
icode:ifun ¬ M1[PC]
rA:rB ¬ M1[PC+1]

valP ¬ PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC
valA ¬ R[rA]
valB ¬ R[rB]

Decode Read operand A
Read operand B

valE ¬ valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

Memory
R[rB] ¬ valEWrite

back
Write back result

PC ¬ valPPC update Update PC

(R[rB]=R[rB] OP R[rA])

20

Executing rmmovq

¢Fetch
§ Read 10 bytes

¢Decode
§ Read operand registers

¢Execute
§ Compute effective address

¢Memory
§ Write to memory (rB+D)

¢Write back
§ Do nothing

¢PC Update
§ Increment PC by 10

rmmovq rA, D(rB) 4 0 rA rB D

21

Stage Computation: rmmovq

§Use ALU for address computation

rmmovq rA, D(rB)

rA:rB ¬ M1[PC+1]
icode:ifun ¬ M1[PC]

valP ¬ PC+10
valC ¬ M8[PC+2]Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ¬ R[rA]
valB ¬ R[rB]

Decode Read operand A
Read operand B

valE ¬ valB + valCExecute Compute effective address

M8[valE] ¬ valAMemory Write value to memory
Write
back

PC ¬ valPPC update Update PC

(Move R[rA] to M8[R[rB]+D])

22

Executing popq

¢Fetch
§ Read 2 bytes

¢Decode
§ Read stack pointer

¢Execute
§ Increment stack pointer by 8

¢Memory
§ Read from old stack pointer

¢Write back
§ Update stack pointer
§ Write result to register

¢PC Update
§ Increment PC by 2

popq rA b 0 rA F

23

Stage Computation: popq
popq rA
icode:ifun ¬ M1[PC]
rA:rB ¬ M1[PC+1]

valP ¬ PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC
valA ¬ R[%rsp]
valB ¬ R[%rsp]

Decode
Read stack pointer
Read stack pointer

valE ¬ valB + 8
Execute

Increment stack pointer

valM ¬ M8[valA]Memory Read from stack
R[%rsp] ¬ valE
R[rA] ¬ valM

Write
back

Update stack pointer
Write back result

PC ¬ valPPC update Update PC

§ Use ALU to increment stack pointer
§ Must update two registers

§ Popped value
§ New stack pointer

(Move M8[R[%rsp]] to R[rA])

24

Executing Conditional Moves

¢Fetch
§ Read 2 bytes

¢Decode
§ Read operand registers

¢Execute
§ If !cond, then set

destination register to 0xF

¢Memory
§ Do nothing

¢Write back
§ Update register (or not)

¢PC Update
§ Increment PC by 2

cmovXX rA, rB 2 fn rA rB

rrmovq 2 0

cmovle 2 1

cmovl 2 2

cmove 2 3

cmovne 2 4

cmovge 2 5

cmovg 2 6

25

Stage Computation: Cond Move

§ Read register rA and pass through ALU
§ Cancel move by setting destination register to 0xF

§ If condition codes & move condition indicate no move

cmovXX rA, rB
icode:ifun ¬ M1[PC]
rA:rB ¬ M1[PC+1]

valP ¬ PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC
valA ¬ R[rA]
valB ¬ 0

Decode
Read operand A

valE ¬ valB + valA
If ! Cond(CC,ifun) rB ¬ 0xF

Execute
Pass valA through ALU
(Disable register update if !Cond)

Memory
R[rB] ¬ valEWrite

back
Write back result

PC ¬ valPPC update Update PC

26

Executing Jumps

¢Fetch
§ Read 9 bytes
§ Increment PC by 9

¢Decode
§ Do nothing

¢Execute
§ Determine whether to take

branch based on jump condition
and condition codes

¢Memory
§ Do nothing

¢Write back
§ Do nothing

¢PC Update
§ Set PC to Dest if branch taken or

to incremented PC if not branch

jXX Dest 7 fn Dest

XXXXfall thru:

XXXXtarget:

Not taken

Taken

27

Stage Computation: Jumps

§ Compute both addresses
§ Choose based on setting of condition codes and branch

condition

jXX Dest
icode:ifun ¬ M1[PC]

valC ¬ M8[PC+1]
valP ¬ PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ¬ Cond(CC,ifun)
Execute

Take branch?
Memory
Write
back

PC ¬ Cnd ? valC : valPPC update Update PC

28

Executing call

¢Fetch
§ Read 9 bytes
§ Increment PC by 9

¢Decode
§ Read stack pointer

¢Execute
§ Decrement stack pointer by 8

¢Memory
§ Write incremented PC to new

value of stack pointer

¢Write back
§ Update stack pointer

¢PC Update
§ Set PC to Dest

call Dest 8 0 Dest

XXXXreturn:

XXXXtarget:

29

Stage Computation: call

§ Use ALU to decrement stack pointer
§ Store incremented PC

call Dest
icode:ifun ¬ M1[PC]

valC ¬ M8[PC+1]
valP ¬ PC+9

Fetch

Read instruction byte

Read destination address
Compute return point

valB ¬ R[%rsp]
Decode

Read stack pointer
valE ¬ valB + –8

Execute
Decrement stack pointer

M8[valE] ¬ valP Memory Write return value on stack
R[%rsp] ¬ valEWrite

back
Update stack pointer

PC ¬ valCPC update Set PC to destination

30

Executing ret

¢Fetch
§ Read 1 byte

¢Decode
§ Read stack pointer

¢Execute
§ Increment stack pointer by 8

¢Memory
§ Read return address from old

stack pointer

¢Write back
§ Update stack pointer

¢PC Update
§ Set PC to return address

ret 9 0

XX XXreturn:

31

Stage Computation: ret

§ Use ALU to increment stack pointer
§ Read return address from memory

ret
icode:ifun ¬ M1[PC]

Fetch

Read instruction byte

valA ¬ R[%rsp]
valB ¬ R[%rsp]

Decode
Read operand stack pointer
Read operand stack pointer

valE ¬ valB + 8
Execute

Increment stack pointer

valM ¬ M8[valA] Memory Read return address
R[%rsp] ¬ valEWrite

back
Update stack pointer

PC ¬ valMPC update Set PC to return address

32

Computation Steps

§ All instructions follow same general pattern
§ Differ in what gets computed on each step

OPq rA, rB
icode:ifun ¬ M1[PC]
rA:rB ¬ M1[PC+1]

valP ¬ PC+2

Fetch

Read instruction byte
Read register byte
[Read constant word]
Compute next PC

valA ¬ R[rA]
valB ¬ R[rB]

Decode
Read operand A
Read operand B

valE ¬ valB OP valA
Set CC

Execute
Perform ALU operation
Set/use cond. code reg

Memory [Memory read/write]
R[rB] ¬ valEWrite

back
Write back ALU result
[Write back memory result]

PC ¬ valPPC update Update PC

icode,ifun
rA,rB
valC
valP
valA, srcA
valB, srcB
valE
Cond code
valM
dstE
dstM
PC

33

Computation Steps

§ All instructions follow same general pattern
§ Differ in what gets computed on each step

call Dest

Fetch

Decode

Execute

Memory
Write
back
PC update

icode,ifun
rA,rB
valC
valP
valA, srcA
valB, srcB
valE
Cond code
valM
dstE
dstM
PC

icode:ifun ¬ M1[PC]

valC ¬ M8[PC+1]
valP ¬ PC+9

valB ¬ R[%rsp]
valE ¬ valB + –8

M8[valE] ¬ valP
R[%rsp] ¬ valE

PC ¬ valC

Read instruction byte
[Read register byte]
Read constant word
Compute next PC
[Read operand A]
Read operand B
Perform ALU operation
[Set /use cond. code reg]
Memory read/write
Write back ALU result
[Write back memory result]
Update PC

34

Summary of Computed Values
¢Fetch

icode Instruction code
ifun Instruction function
rA Instr. Register A
rB Instr. Register B
valC Instruction constant
valP Incremented PC

¢Decode
srcA Register ID A
srcB Register ID B
dstE Destination Register E
dstM Destination Register M
valA Register value A
valB Register value B

¢Execute
§ valE ALU result
§ Cnd Branch/move flag

¢Memory
§ valM Value from memory

