
1

Digital Logic and
Sequential Y86-64 Implementations

CSCI 237: Computer Organization
15th Lecture, Mar 14, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details
¢ Lab 3 – great job! Really good progress!
§ Due before spring break (use submit237 3 {files})

¢ HW 4 due today on Glow
§ We can review on Tuesday if necessary

¢ Midterm details – material through today
§ Mar 19/20th during lab time in Wege (lots of room to spread out)
§ Closed notes
§ Focuses on Chapters 1-4 (emphasis on Ch 2 and 3) and Labs 1 and 2
§ Review session on Tuesday at 8pm in TPL 205
§ No class on WED! I’ll be in my office to answer questions.
§ But we do have class next Friday L

3

Last time

¢ Wrapped up Y86-64 overview
¢ Learned how to write, assemble, and run Y86 code
¢ Observations from lab
§ Simplified instructions have consequences
§ Some actions take multiple steps in Y86 but only one step in x86
§ RISC vs CISC tradeoffs

4

Today

¢ Discuss digital logic and HCL (Ch 4.2)
¢ Brief overview of memory and clocking
§ How is information stored

¢ Intro to sequential Y86-64 implementations (Ch 4.3)
§ Organizing processing into stages

5

Ch 4.2 – Computing with Logic Gates

§ Logic gates are the basic computing elements for digital circuits
§ Outputs are Boolean functions of inputs
§ Respond continuously to changes in inputs

§ With some small delay

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay Falling Delay

6

Bit Equality

¢ Generate 1 (true) if a and b are equal
¢ Hardware Control Language (HCL) for Y86 processors
§ Very simple hardware description language (HDL)

§ Boolean operations have syntax similar to C logical operations
§ We’ll use it to describe control logic for processors

§ As close as we get to designing hardware
§ Verilog and VHDL are examples of “real” HDLs

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)

HCL Expression

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

7

https://logic.ly/demo/

Bit equal
a

b

eq
Bit Equality

https://logic.ly/demo/

8

Word Equality

§ Words are equals if all bits
are the same

§ 64-bit word size
§ HCL representation

§ Equality operation
§ Generates Boolean value

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A
Eq

Word-Level Representation

bool Eq = (A == B)
HCL Representation

9

Bit-Level Multiplexor

§ Control input signal s
§ Data signals a and b
§ Output a when s=1, b when s=0

Bit “MUX”

b

s

a

out

bool out = (s&&a)||(!s&&b)

HCL Expression

10

Word Multiplexor

§ Select input word A or B
depending on control signal s

§ HCL representation
§ Case expression
§ Series of test : value pairs
§ Output value for first

successful test

Word-Level Representation

HCL Representation

b63

s

a63

out63

b62

a62

out62

b0

a0

out0

int Out = [
 s : A;
 1 : B;
];

s

B

A
OutMUX

11

HCL Word-Level Examples

§ Find minimum of
three input words

§ HCL case
expression

§ Final case
guarantees match

A
Min3MIN3B

C
int Min3 = [
 A < B && A < C : A;
 B < A && B < C : B;
 1 : C;
];

D

A

Out4

s0
s1

MUX4
B
C

int Out4 = [
 !s1&&!s0: A; #00
 !s1 : B; #01
 !s0 : C; #10
 1 : D; #11
];

Minimum of 3 Words

4-Way Multiplexor
§ Select one of 4 inputs

based on 2 control bits
§ HCL case expression
§ Simplify tests by

assuming sequential
matching

12

Hardware Control Language (HCL) Summary

¢ Very simple hardware description language
¢ Can only express limited aspects of hardware operation
§ Parts we want to explore and modify

¢ Data Types
§ bool: Boolean

§ a, b, c, …
§ int: words

§ A, B, C, …
§ Does not specify word size—bytes, 64-bit words, …

¢ Statements
§ bool a = bool-expr ;
§ int A = int-expr ;

13

HCL Operations
¢ Classify by type of value returned
¢ Boolean Expressions
§ Logic Operations

§ a && b, a || b, !a
§ Word Comparisons

§ A == B, A != B, A < B, A <= B, A >= B, A > B
§ Set Membership

§ A in { B, C, D }
– Same as A == B || A == C || A == D

¢ Word Expressions
§ Case expressions

§ [a : A; b : B; c : C]
§ Evaluate test expressions a, b, c, … in sequence
§ Return word expression A, B, C, … for first successful test

14

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit (ALU)

§ Very important combinational logic circuit
§ Continuously responding to inputs

§ Control signal selects function computed
§ Corresponding to 4 arithmetic/logical operations in Y86-64

§ Also computes values for condition codes

A
L
U

Y

X

X + Y

0

A
L
U

Y

X

X - Y

1

A
L
U

Y

X

X & Y

2

A
L
U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

addq 6 0

subq 6 1

andq 6 2

xorq 6 3

15

As aside:
VHDL example

16

Moving on: Storing Bits
¢ Combination circuits do not store information
§ Only react to signals at inputs and generate outputs

¢ Creating a sequential circuit requires storage
§ Seq circuits have state and perform computations on that state

¢ Storage devices are controlled by a single clock
§ A periodic signal that determines when new values are to be loaded

¢ Two classes of memory devices:
§ Clocked registers – store individual bits or words
§ Random access memories (RAM) – store multiple words using an address

to select where word should be read/written

¢ Distinction between hardware registers and program registers
§ Hardware registers are directly connected to circuits
§ Program registers are stored in register file, which is a type of RAM

17

Hardware Registers

§ Stores word of data
§ Different from program registers seen in assembly code (e.g., %rdi)
§ Collection of edge-triggered latches
§ Loads input on rising edge of clock

Structure

I O

Clock

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7

i6

i5

i4

i3

i2

i1

i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

18

Register Operation

§Register stores data bits
§Acts as barrier between input and output
§As clock rises, loads input, possibly changes output
§ Y86-64 processor uses clocked registers to hold PC,

CC, and Stat

State = x
Rising
clock_Output = xInput = y

x
_

State = y

Output = y
y

19

State Machine Example

§ Accumulator circuit
§ Load or accumulate

on each cycle
§ (Notice effect of

clock on Out)

Comb. Logic

A
L
U

0

Out
MUX

0

1

Clock

In

Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out

20

Random-Access Memory

§ Stores multiple words of memory (has internal storage)
§ Address input specifies which word to read or write

§ Register file
§ Holds values of program registers (%rax, %rsp, etc.)
§ Register identifier serves as address

– ID 15 (0xF) implies no read or write performed
§ Multiple Ports

§ Can read and/or write multiple words in one cycle
– Each has separate address and data input/output

Register
file

A

B

W dstW

srcA

valA

srcB

valB

valW
Read
ports

Write port

Clock

21

Register File Timing
¢ Reading
§ Like combinational logic
§ Output data generated based on input addr

§ After some small delay

¢ Writing
§ Like hardware register
§ Update only as clock rises

Register
file

A

B

srcA

valA

srcB

valB

y
2

Register
file W dstW

valW

Clock

x2
Rising
clock_ _ Register

file W dstW

valW

Clock

y2

x2

x
2

Clock

22

Ch 4.2 Summary
¢ Computation
§ Performed by combinational logic
§ Computes Boolean functions
§ Continuously reacts to input changes

¢ Storage
§ Registers (hardware)

§ Hold single words
§ Loaded as clock rises

§ Random-access memories
§ Hold multiple words
§ Possible multiple read or write ports
§ Read word when address input changes
§ Write word as clock rises

23

Moving on to Ch 4.3:
SEQ Hardware Structure
¢ State (red boxes)
§ Program counter register (PC)
§ Condition code register (CC)
§ Register File
§ Memories

§ Access same memory space
§ Data: for reading/writing program data
§ Instruction: for reading instructions

¢ Instruction Flow (arrows)
§ Read instruction at address

specified by PC
§ Process through stages
§ Update program counter

Instruction
memory

Instruction
Memory PCPC

incr

CCCC ALUALU

Data
memory
Data
memory

Fetch

Decode

Execute

Memory

Write back

Register
file

Register
file

A B M

E
Register

file
Register
file

A B M

E

PC

valP

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC update
valE, valM

newPC

icode, ifun
rA, rB

valC

srcA, srcB
dstA, dstB

24

SEQ Stages

¢ Fetch
§ Read instruction from instr memory

¢ Decode
§ Read program registers from instr

¢ Execute
§ Compute value or address

¢ Memory
§ Read or write data

¢ Write Back
§ Write program registers to register file

¢ PC update
§ Update program counter

Instruction
memory

Instruction
Memory PCPC

incr

CCCC ALUALU

Data
memory
Data

memory

Fetch

Decode

Execute

Memory

Write back

Register
file

Register
file

A B M

E
Register

file
Register
file

A B M

E

PC

valP

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC update
valE, valM

newPC

icode, ifun
rA, rB

valC

srcA, srcB
dstA, dstB

25

Instruction Decoding

¢ Instruction Format
§ Instruction byte icode:ifun
§ Optional register byte rA:rB
§ Optional constant word valC

5 0 rA rB D

icode
ifun

rA
rB

valC

Optional Optional

26

Executing Arithmetic/Logical Operation

¢Fetch
§ Read 2 bytes

¢Decode
§ Read operand registers

¢Execute
§ Perform operation
§ Set condition codes

¢Memory
§ Do nothing

¢Write back
§ Update register rB

¢PC Update
§ Increment PC by 2 bytes

OPq rA, rB 6 fn rArB

27

Stage Computation: Arith/Log Ops

§ Formulate instruction execution as sequence of simple steps
§ Use same general form for all instructions
§ Note: M1 indicates we’re accessing 1 byte of memory (usually instruction

memory), while M8 indicates we’re accessing 8 bytes (usually data memory)

OPq rA, rB
icode:ifun ¬ M1[PC]
rA:rB ¬ M1[PC+1]

valP ¬ PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC
valA ¬ R[rA]
valB ¬ R[rB]

Decode Read operand A
Read operand B

valE ¬ valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

Memory
R[rB] ¬ valEWrite back Write back result

PC ¬ valPPC update Update PC

(R[rB]=R[rB] OP R[rA])

28

Executing rmmovq

¢Fetch
§ Read 10 bytes

¢Decode
§ Read operand registers

¢Execute
§ Compute effective address

¢Memory
§ Write to memory (rB+D)

¢Write back
§ Do nothing

¢PC Update
§ Increment PC by 10

rmmovq rA, D(rB) 4 0 rA rB D

29

Stage Computation: rmmovq

§Use ALU for address computation

rmmovq rA, D(rB)

rA:rB ¬ M1[PC+1]
icode:ifun ¬ M1[PC]

valP ¬ PC+10
valC ¬ M8[PC+2]Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ¬ R[rA]
valB ¬ R[rB]

Decode Read operand A
Read operand B

valE ¬ valB + valCExecute Compute effective address

M8[valE] ¬ valAMemory Write value to memory

Write back

PC ¬ valPPC update Update PC

(Move R[rA] to M8[R[rB]+D])

30

Executing popq

¢Fetch
§ Read 2 bytes

¢Decode
§ Read stack pointer

¢Execute
§ Increment stack pointer by 8

¢Memory
§ Read from old stack pointer

¢Write back
§ Update stack pointer
§ Write result to register

¢PC Update
§ Increment PC by 2

popq rA b 0 rA F

31

Stage Computation: popq
popq rA
icode:ifun ¬ M1[PC]
rA:rB ¬ M1[PC+1]

valP ¬ PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC
valA ¬ R[%rsp]
valB ¬ R[%rsp]

Decode
Read stack pointer
Read stack pointer

valE ¬ valB + 8
Execute

Increment stack pointer

valM ¬ M8[valA]Memory Read from stack
R[%rsp] ¬ valE
R[rA] ¬ valM

Write
back

Update stack pointer
Write back result

PC ¬ valPPC update Update PC

§ Use ALU to increment stack pointer
§ Must update two registers

§ Popped value
§ New stack pointer

(Move M8[R[%rsp]] to R[rA])

