
1

Structures and Intro to Y86-64

CSCI 237: Computer Organization
13th Lecture, Mar 10, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ bob for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Administrative Details
¢ Lab 2: final 2 phases due Tues/Wed

§ If you haven’t at least partially figured out phase 4, I am a little worried.
Come see me and/or TAs if you need help!

¢ HW 4 due Friday
¢ Midterm review session Tuesday 3/18 in the evening?

§ Details TBD
§ Sample midterms and solutions posted on course webpage

¢ Midterm during lab next week
§ I will try to reserve a classroom
§ Let me know ASAP if you have accommodations and need special

arrangements

3

Last time

¢ Procedure register saving conventions
¢ Arrays (Ch 3.8)
§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

4

Today: Wrap up Ch 3

¢ Arrays (Ch 3.8)
§ Multi-dimensional (nested)
§ Multi-level

¢ Structures (Ch 3.9)
§ Allocation
§ Access
§ Alignment

¢ Intro to Y86-64 Instruction Set Architecture
§ Similar state and instructions as x86-64
§ Simpler encodings
§ Somewhere between CISC and RISC

5

Recap: Array Allocation
¢ Basic Principle

T A[L];
§ Array A of data type T and length L
§ Contiguously allocated region of L * sizeof(T) bytes in memory
§ x is an address

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

char *p[3];

x x + 8 x + 16 x + 24

6

Multidimensional (Nested) Arrays
¢ Declaration

T A[R][C];
§ 2D array A of data type T
§ R rows, C columns
§ Type T element requires K bytes

¢ Array Size
§ R * C * K bytes

¢ Arrangement
§ Row-Major Ordering

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•
•
•

•
•
•

int A[R][C];

• • •
A

[0]
[0]

A
[0]

[C-1]
• • •

A
[1]
[0]

A
[1]

[C-1]
• • •

A
[R-1]
[0]

A
[R-1]
[C-1]

• • •

4*R*C Bytes

7

Nested Array Example

¢ eph_val herd[4] equivalent to int herd[4][5]
§ Variable herd: array of 4 elements, allocated contiguously
§ Each element in herd is an array of 5 int’s, allocated contiguously

¢ “Row-Major” ordering of all elements in memory

#define COUNT 4
eph_val herd[COUNT] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3 },
 {1, 5, 2, 1, 7 },
 {1, 5, 2, 2, 1 }};

eph_val
herd[4];

76 96 116 136 156

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

#define LEN 5
typedef int eph_val[LEN];

8

• • •

Nested Array Row Access
¢ Row Vectors

§ A[i] is array of C elements
§ Each element of type T requires K bytes
§ Starting address A + i * (C * K)

• • •
A

[i]
[0]

A
[i]

[C-1]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

9

Nested Array Row Access

¢ Row Vector
§ herd[index] is an eph_val (an array of 5 int’s)
§ Starting address herd + 20*index

¢ Machine Code
§ Computes and returns address
§ Compute as herd + 4*(index + 4*index)

int *get_herd_eph(int index){
 return herd[index];
}

%rdi = index
 leaq (%rdi,%rdi,4),%rax # 5 * index
 leaq herd(,%rax,4),%rax # herd + (20 * index)

herd

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

herd[2]

//LEN=5, COUNT=4
typedef int eph_val[LEN];
eph_val herd[COUNT];

10

• • •

Nested Array Element Access
¢ Array Elements

§ A[i][j] is element of type T, which requires K bytes
§ Address A + i * (C * K) + j * K
 = A + (i * C + j) * K

• • • • • •
A

[i]
[j]

A[i]

• • •
A

[R-1]
[0]

A
[R-1]
[C-1]

A[R-1]

• • •

A

• • •
A

[0]
[0]

A
[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

A+(i*C*4)+(j*4)

11

Nested Array Element Access

¢ Array Elements
§ herd[index][val] is int
§ Address: herd + 20*index + 4*val

 = herd + 4*(5*index + val)

int get_herd_value(int index, int val){
 return herd[index][val];
}

leaq (%rdi,%rdi,4), %rax # 5*index
 addl %rax, %rsi # 5*index+val
 movl herd(,%rsi,4), %eax # M[herd + 4*(5*index+val)]

herd

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

herd[1][1]

//LEN=5, COUNT=4
typedef int eph_val[LEN];
eph_val herd[COUNT];

12

get_herd_value:

.LFB0:

 movslq %esi, %rsi

 movslq %edi, %rdi

leaq (%rdi,%rdi,4), %rax

addq %rax, %rsi

movl herd(,%rsi,4), %eax

ret

herd:

 .long 1

 .long 5

 .long 2

 .long 0

 .long 6

 .long 1

 .long 5

 .long 2

 .long 1

 .long 3

 .long 1

 . . .

13

Nested Arrays Summary

¢ Allocated contiguously in memory
¢ We can conveniently locate any element using math
¢ We will see later that these arrays are also “cache friendly”

¢ However, there are other ways to make 2-D arrays.
§ What if we wanted to assemble an array out of pointers to existing arrays?

14

Multi-Level Array Example
¢ Variable name denotes array

of 3 elements
¢ Each element is a pointer

§ 8 bytes
¢ Each pointer points to an
eph_val (an array of int’s)

eph_val bob = { 1, 5, 2, 1, 3 };
eph_val aly = { 0, 2, 1, 3, 9 };
eph_val dan = { 9, 4, 7, 2, 0 };

#define COUNT 3
int *name[COUNT] = {aly, bob, dan};

36160

16

56

168

176

name

bob

aly

dan

1 5 2 1 3

16 20 24 28 32 36
0 2 1 3 9

36 40 44 48 52 56

9 4 7 2 0

56 60 64 68 72 76

//LEN=5
typedef int eph_val[LEN];

15

Element Access in Multi-Level Array

¢ Computation
§ Element access Mem[Mem[name+8*index]+4*val]
§ Must do two memory reads

§ First get pointer to row array
§ Then access element within array

salq $2, %rsi # 4*val
 addq name(,%rdi,8), %rsi # p = name[index] + 4*val
 movl (%rsi), %eax # return *p
 ret

int get_name_value
 (size_t index, size_t val) {
 return name[index][val];
}

bob

aly

dan

name

16

Array Element Accesses

int get_herd_value
 (size_t index, size_t val) {
 return herd[index][val];
}

int get_name_value
 (size_t index, size_t val) {
 return name[index][val];
}

Nested array Multi-level array

Accesses looks similar in C, but address computations very different:

Mem[herd+20*index+4*val] Mem[Mem[name+8*index]+4*val]

17

Moving on: Struct Overview

¢ Structs are a way to make “composite types” in C
¢ Syntax:

struct name {

 type_0 name_0;

 type_1 name_1;

 type_2 name_2;

 …

};

…

struct name var;

var.name_0 = val;

var.name_2 = another_val;

…

18

Ch 3.9 - Structure Representation

¢ Above example is a recursive data structure (modified linked list)
¢ Structure represented as contiguous block of memory

§ Big enough to hold all of the fields

¢ Fields ordered according to declaration
§ Even if another ordering could yield a more compact representation

¢ Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the structures in the

source code

a

r

i next

0 16 24 32

struct rec {
 int a[4];
 size_t i;
 struct rec *next;
};
…
struct rec r;

19

r in %rdi, idx in %rsi
 leaq (%rdi,%rsi,4), %rax
 ret

int *get_ap
 (struct rec *r, size_t idx) {
 return &r->a[idx];
}

Generating Pointer to Structure Member

¢ Generating Pointer to Array
Element
§ Offset of each structure member

determined at compile time
§ Compute as r + 4*idx

r+4*idx

a

r

i next

0 16 24 32

struct rec {
 int a[4];
 size_t i;
 struct rec *next;
};

21

Structures & Alignment

¢ Aligned Data
§ Primitive data type requires k bytes
§ Address must be multiple of k

¢ Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)

§ Inefficient to load or store data that spans quad word boundaries

¢ Compiler
§ Inserts gaps in structs to ensure correct alignment of fields

22

Structures & Alignment
¢ Unaligned Data

¢ Aligned Data
§ Primitive data type requires k bytes
§ Address must be multiple of k

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v
p p+1 p+5 p+9 p+17

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

23

struct S1 {
 char c;
 int i[2];
 double v;
} *p;

Satisfying Alignment with Structures
¢ Within structure:

§ Must satisfy each element’s alignment requirement

¢ Overall structure placement
§ Each structure has alignment requirement K

§ K = Largest alignment of any element in struct
§ Initial address & overall structure length must be multiples of K

¢ Example:
§ K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

24

Arrays of Structures

¢ Overall structure length multiple of K
§ K = Largest alignment of any element

¢ Satisfy alignment requirement
for every element (little k)

struct S2 {
 double v;
 int i[2];
 char c;
} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

25

Arrays & Structures (Ch 3.8-3.9) Summary

¢ Arrays
§ Elements packed into contiguous region of memory
§ Use index arithmetic to locate individual elements

¢ Structures
§ Elements packed into single region of memory
§ Access using offsets determined by compiler
§ Possible require internal and external padding to ensure alignment (little k

and big K)

26

Today: Moving on to Ch 4

¢ Arrays (Ch 3.8)
§ Multi-dimensional (nested)
§ Multi-level

¢ Structures (Ch 3.9)
§ Allocation
§ Access
§ Alignment

¢ Intro to Y86-64 Instruction Set Architecture
§ Similar state and instructions as x86-64
§ Simpler encodings
§ Somewhere between CISC and RISC

27

Ch 4 Processor Architecture Overview

¢ Background
§ Instruction sets (today)
§ Logic design

¢ Sequential Implementation
§ A simple, but not very fast processor design

¢ Pipelining
§ Several overlapping tasks running simultaneously

¢ Pipelined Implementation
§ Make it work in the presence of “hazards”

28

Coverage

¢ Our Approach
§ Work through designs for particular instruction set

§ Y86-64 − a simplified (gentler) version of the Intel x86-64 ISA
§ A little closer to RISC than x86-64, but still CISC

§ Work at “micro-architectural” level
§ Assemble basic hardware blocks into overall processor structure

– Memories, functional units, etc.
§ Surround by control logic to make sure each instruction flows through

properly
§ Use simple hardware description language to describe control logic

§ Can extend and modify
§ Test via simulation

29

An Aside: CISC vs. RISC

https://www.microcontrollertips.com/risc-vs-cisc-architectures-one-better/

30

CISC Instruction Sets
¢ Complex Instruction Set Computer

§ X86-64 is an example

¢ Stack-oriented instruction set
§ Use stack to pass arguments, save program counter
§ Explicit push and pop instructions

¢ Arithmetic instructions can access memory
§ addq %rax, 12(%rbx,%rcx,8)

§ Requires memory read and write
§ Complex address calculation

¢ Condition codes
§ Set as side effect of arithmetic and logical instructions

¢ Philosophy
§ Add instructions to perform “typical” programming tasks

31

RISC Instruction Sets
¢ Reduced Instruction Set Computer

§ Internal project at IBM, later popularized by Hennessy (Stanford) and
Patterson (Berkeley)

§ Examples: MIPS, ARM

¢ Fewer, simpler instructions
§ Might take more to get given task done
§ Can execute them with small and fast hardware

¢ Register-oriented instruction set
§ Many more (typically 32) registers
§ Use for arguments, return pointer, temporaries

¢ Only load and store instructions can access memory
§ Similar to Y86-64 mrmovq and rmmovq

¢ No Condition codes
§ Test instructions return 0/1 in register

35

Ch 4.1 - Instruction Set Architecture
¢ Assembly Language View

§ Processor state
§ Registers, memory, …

§ Instructions
§ addq, pushq, ret, …
§ How instructions are encoded as bytes

¢ Layer of Abstraction
§ Above: how to program machine

§ Processor executes instructions in a
sequence

§ Below: what needs to be built
§ Use variety of tricks to make it run fast
§ E.g., execute multiple instructions

simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

36

ZF SF OF

Y86-64 Processor State

§ Program Registers
§ 15 registers (omit %r15). Each 64 bits.

§ Condition Codes
§ Single-bit flags set by arithmetic or logical instructions

– ZF: Zero SF: Negative OF: Overflow
§ Program Counter

§ Indicates address of next instruction
§ Program Status

§ Indicates either normal operation or some error condition
§ Memory

§ Byte-addressable storage array
§ Words stored in little-endian byte order

RF: Program registers
CC:

Condition
codes

PC

DMEM: Memory

Stat: Program status

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%rax

%rcx

%rdx

%rbx

%rsp

%rbp

%rsi

%rdi

37

Y86-64 Instruction Set #1
Byte

pushq rA A 0 rA F

jXX Dest 7 fn Dest

popq rA B 0 rA F

call Dest 8 0 Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

mrmovq D(rB), rA 5 0 rA rB D

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

