Structures and Intro to Y86-64

CSCI 237: Computer Organization
13th Lecture, Mar 10, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ bob for use with Computer Systems: A Programmer’s Perspective, Third Edition 1

Administrative Details

m Lab 2: final 2 phases due Tues/Wed

" If you haven’t at least partially figured out phase 4, | am a little worried.
Come see me and/or TAs if you need help!

m HW 4 due Friday

m Midterm review session Tuesday 3/18 in the evening?
= Details TBD
= Sample midterms and solutions posted on course webpage

m Midterm during lab next week

= | will try to reserve a classroom

* Let me know ASAP if you have accommodations and need special
arrangements

Last time

m Procedure register saving conventions
m Arrays (Ch 3.8)

" One-dimensional
" Multi-dimensional (nested)
" Multi-level

Today: Wrap up Ch 3

m Arrays (Ch 3.8)

® Multi-dimensional (nested)
" Multi-level

m Structures (Ch 3.9)

" Allocation
= Access
= Alignment

m Intro to Y86-64 Instruction Set Architecture
= Similar state and instructions as x86-64
= Simpler encodings
®= Somewhere between CISC and RISC

]
Recap: Array Allocation

m Basic Principle
I A[L];
= Array A of data type T and length L

= Contiguously allocated region of L * sizeof (T) bytesin memory

" xis an address

char string[12];

X xX+12

int val[5];

X ey

X+4 X+8 x+12 xX+16 x+ 20
double a[3];
| | |
X x+8 x+16 X+ 24
char *p[3];
| | | |
X X+8 x+16 X+ 24

Multidimensional (Nested) Arrays

m Declaration
I A[R] [C];
= 2D array A of data type T

A[0][0] e+ o « A[O][C-1]

"= Rrows, C columns . .

" Type T element requires K bytes
A[R-1][0] ¢ ¢ o A[R-1][C-1]

m Array Size _ _
= R*C*Kbytes

m Arrangement

® Row-Major Ordering

int A[R] [C];

A A A A A A
[0] | + =+ + | [0]|[2] |~ + - | [1] « + + |r-11f -+ - - [[R-1]
[0] [c-1]| [0] [C-1] [0] [C-1]

4*R*C Bytes

#define LEN 5
typedef int eph val[LEN];

Nested Array Example

#define COUNT 4
eph val herd[COUNT] =
{{1, 5, 2, 0, 6},
{1, 5, 2, 1, 3},
{1, 5, 2, 1, 7 },
{1, 5, 2, 2, 1 }};
eph val
- 1(5(2(0(6]1|(5(2(1|(3|1|5(2(1|7]1(5(2(2(1
herd[4];

76 96 116 136 156

m eph val herd[4] equivalentto int herd[4] [5]
* Variable herd: array of 4 elements, allocated contiguously
* Each element in herd is an array of 5 int’s, allocated contiguously

m “Row-Major” ordering of all elements in memory

Nested Array Row Access

m Row Vectors
= A[i] is array of C elements

* Each element of type T requires K bytes
= Starting addressA + i * (C * K)

int A[R][C];

e———— A[O0] — Je——— A[1] > e—— A[R-1] ——
A A A A A A
[0] cooe [0] | o @ [1i] cooeo [i] | e e e |[R-1] cooe [R-1]
[0] [C-1] [0] [C-1] [0] [C-1]

1] |

A A+ (1i*C*4) A+ ((R-1) *C*4)

//LEN=5, COUNT=4
typedef int eph val[LEN];

Nested Array Row Access eph_val herd[CODNT]

115(2|0|6]1|(5|2|1(3]|]1|5(2|1|7]1|5|2(2|1

herd herd[2] int *get herd eph(int index) {

return herd[index];

}

$rdi = index
leag (%rdi,%rdi,4) ,%rax # 5 * index
leaqg herd(,%rax,4) ,%rax # herd + (20 * index)

m Row Vector
" herd[index] isaneph wal (anarrayof5 int’s)
= Starting address herd + 20*index

m Machine Code
® Computes and returns address
" Compute asherd + 4* (index + 4*index)

Nested Array Element Access

m Array Elements
= A[i][7] is element of type T, which requires K bytes

“ Address A + i * (C * K) + 1 * K
=A+ (i *C+ j) * K

int A[R][C];

——— A[O0] — J—— A[1i] > e—— A[R-1] —
A A A A A
[0] oo [0] |@ o @ e [i] e e o o |[R-1] cooeo [R-1]
[0] [C-1] []] [O0] [C-1]

A A+ (1*C*4) ‘ A+ ((R-1) *C*4)

A+ (1*C*4) + (j*4)

10

//LEN=5, COUNT=4
typedef int eph val[LEN];

Nested Array Element Access | vai neratcoor;

115(2|0|6]1|5|2|1(3]|]1|5(2|1|7]1|5|2(2|1

herd herd[1][1]
int get herd value(int index, int wval) {
return herd[index] [val];
}
leaq (%rdi,%rdi,4), S%rax # 5*index
addl %rax, %rsi # 5*index+val
movl herd(,%rsi,4), %eax # M[herd + 4* (5*index+val)]

m Array Elements
" herd[index] [val] isint
* Address:herd + 20*index + 4*val
= herd + 4* (5*index + val)

11

get herd value:

.LFBO:
movslg %esi, Srsi
movslg edi, Srdi
leaq (%rdi, %$rdi,4), %Srax
addgq Srax, %rsi

movl @ ,%rsi,4), %eax

re

.long
.long
.long
.long
.long
.long
.long
.long
.long
.long

R w PN Oy O N OB

.long

12

Nested Arrays Summary

m Allocated contiguously in memory
m We can conveniently locate any element using math
m We will see later that these arrays are also “cache friendly”

m However, there are other ways to make 2-D arrays.
* What if we wanted to assemble an array out of pointers to existing arrays?

13

Multi-Level Array Example

eph val bob = { 1, 5, 2, 1, 3 };
eph val aly = { 0, 2, 1, 3, 9 };
eph val dan = { 9, 4, 7, 2, 0 };

#define COUNT 3

int *name[COUNT] = {aly, bob, dan};

/ /LEN=5
typedef int eph val[LEN];

m Variable name denotes array
of 3 elements

m Each element is a pointer
= 8 bytes

m Each pointer points to an
eph val (anarray of int’s)

bob
1 5 2 1 3
name
16 20 24 28 32 36
160 —| 36 aly
0 2 1 3 9
168 —| 16 I
36 40 44 48 52 56
176 ——| 56 dan
9 4 7 2 0
56 60 64 68 72 76

14

Element Access in Multi-Level Array

name pop 1 S 2 1 3
int get name value i
(size_t index, size t val) { 0 2 1 3 9
return name|[index] [val]; o dan
} ~__ — | o9 4 7 2 0
salqg $2, %rsi # 4*val
addg name (,%rdi,8), %rsi # p = name[index] + 4*val
movl (%rsi), %eax # return *p
ret

m Computation
" Element access Mem [Mem[name+8*index]+4*val]
® Must do two memory reads
= First get pointer to row array
= Then access element within array

15

Array Element Accesses

Nested array Multi-level array
int get herd value int get name value
(size_t index, size t val) { (size_t index, size t val) ({
return herd[index] [val]; return name[index] [val];
bob
1 5 2 1 3
1|5(2]0|6|1|5|2|1|3|1|5|2|1|7|1]5]|2|2|1 160 —IFl aly 2 20 24 28 32 36
0 2 1 3 9
168 — 16
76 96 116 136 156 176 —1 56 @_ dan 30 40 44 48 52 56
\/% 9 4 7 2 0

Accesses looks similar in C, but address computations very different:
Mem[herd+20*index+4*val] Mem[Mem[name+8*index]+4*val]

16

Moving on: Struct Overview

m Structs are a way to make “composite types” in C

m Syntax:
struct name {
type 0 name O;
type 1 name 1;
type 2 name 2;

struct name var;
var.name_O = val;

var.name_2 = another_val;

17

Ch 3.9 - Structure Representation

r
struct rec {
int a[4]; M
size t i; a i next
* o
. struct rec *next; 0 16 24 32
struct rec r;

m Above example is a recursive data structure (modified linked list)

m Structure represented as contiguous block of memory

= Big enough to hold all of the fields
m Fields ordered according to declaration

* Even if another ordering could yield a more compact representation
m Compiler determines overall size + positions of fields

* Machine-level program has no understanding of the structures in the
source code

18

Generating Pointer to Structure Member

r r+4*idx

struct rec { l

int a[4]; v

size t i; a i next

%* .
. struct rec *next; 0 16 24 32
m Generating Pointer to Array int *get ap

Element (struct rec *r, size t idx) ({

return &r->a[idx];

= Offset of each structure member }

determined at compile time
* Computeasr + 4*idx # r in %rdi, idx in %rsi
leaq $rdi,%rsi,4), S%rax
ret

19

Structures & Alignment

m Aligned Data
" Primitive data type requires k bytes
* Address must be multiple of k

m Motivation for Aligning Data
= Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)
= |[nefficient to load or store data that spans quad word boundaries

m Compiler
" Inserts gaps in structs to ensure correct alignment of fields

21

Structures & Alignment

m Unaligned Data struct S1 {
; ; char c;
c 1[0] i[1] . int i[2];
p pt+l p+5 p+9 p+17 double v;
} *p;

m Aligned Data
= Primitive data type requires k bytes
= Address must be multiple of k

c i[O0] i[1] v
p+0 pt+4 p+8 p+1l6 pt+24
Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

22

Satisfying Alignment with Structures

m Within structure:

struct S1 {

* Must satisfy each element’s alignment requirement char c;
= Overall structure placement ;ntbi[zl "
ou e v,
= Each structure has alignment requirement K } *p;

= K= Largest alignment of any element in struct

" Initial address & overall structure length must be multiples of K

m Example:

= K=8, due to double element

c i[O0] i[1] v
p+0 pt+4 p+8 p+1l6 pt+24
Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

23

Arrays of Structures

struct S2 {
m Overall structure length multiple of K double v;
. . int i[2];
K = Largest alignment of any element char o
m Satisfy alignment requirement } a[l0];
for every element (little k)
alo0] al[l] al[2] o o o
a+0 a+24 a+48 a+72
v i[0] i[1] c
a+24 a+32 a+40 a+48

24

]
Arrays & Structures (Ch 3.8-3.9) Summary

m Arrays
" Elements packed into contiguous region of memory
= Use index arithmetic to locate individual elements

m Structures
" Elements packed into single region of memory

= Access using offsets determined by compiler
= Possible require internal and external padding to ensure alignment (little k
and big K)

25

Today: Moving on to Ch 4

m Arrays (Ch 3.8)

" Multi-dimensional (nested)
" Multi-level

m Structures (Ch 3.9)
= Allocation
" Access
" Alignment

m Intro to Y86-64 Instruction Set Architecture

" Similar state and instructions as x86-64
= Simpler encodings
" Somewhere between CISC and RISC

26

Ch 4 Processor Architecture Overview

m Background
" Instruction sets (today)
" Logic design
m Sequential Implementation
= A simple, but not very fast processor design
m Pipelining
= Several overlapping tasks running simultaneously
m Pipelined Implementation

= Make it work in the presence of “hazards”

27

Coverage

m Our Approach
® Work through designs for particular instruction set
= Y86-64 — a simplified (gentler) version of the Intel x86-64 ISA
= A little closer to RISC than x86-64, but still CISC
= Work at “micro-architectural” level
= Assemble basic hardware blocks into overall processor structure
— Memories, functional units, etc.

= Surround by control logic to make sure each instruction flows through
properly
= Use simple hardware description language to describe control logic
= Can extend and modify
= Test via simulation

28

CISC

RISC

The original microprocessor ISA

Redesigned ISA that emerged in
the early 1980s

Instructions can take several
clock cycles

Single-cycle instructions

Hardware-centric design

—the ISA does as much as
possible using hardware

circuitry

Software-centric design

— High-level compilers take on
most of the burden of coding
many software steps from the
programmer

More efficient use of RAM than
RISC

Heavy use of RAM (can cause
bottlenecks if RAM is limited)

Complex and variable length
instructions

Simple, standardized
instructions

May support microcode (micro-
programming where
instructions are treated like
small programs)

Only one layer of instructions

Large number of instructions

Small number of fixed-length
instructions

Compound addressing modes

Limited addressing modes

https://www.microcontrollertips.com/risc-vs-cisc-architectures-one-better/

I
An Aside: CISC vs. RISC

29

e
CISC Instruction Sets

m Complex Instruction Set Computer
= X86-64 is an example
m Stack-oriented instruction set
= Use stack to pass arguments, save program counter
= Explicit push and pop instructions
m Arithmetic instructions can access memory
" addg %Srax, 12 (%rbx,%rcx, 8)
= Requires memory read and write
= Complex address calculation
m Condition codes
= Set as side effect of arithmetic and logical instructions

m Philosophy

= Add instructions to perform “typica

I”

programming tasks

30

e
RISC Instruction Sets

m Reduced Instruction Set Computer

" Internal project at IBM, later popularized by Hennessy (Stanford) and
Patterson (Berkeley)

= Examples: MIPS, ARM

m Fewer, simpler instructions

* Might take more to get given task done

= Can execute them with small and fast hardware
m Register-oriented instruction set

= Many more (typically 32) registers

= Use for arguments, return pointer, temporaries

m Only load and store instructions can access memory

= Similar to Y86-64 mrmovqg and rmmovqg

m No Condition codes

= Test instructions return 0/1 in register
31

Ch 4.1 - Instruction Set Architecture

m Assembly Language View
® Processor state
= Registers, memory, ...
" |nstructions
» addqg, pushqg, ret, ..

= How instructions are encoded as bytes

m Layer of Abstraction

= Above: how to program machine

» Processor executes instructions in a
sequence

" Below: what needs to be built
= Use variety of tricks to make it run fast

= E.g., execute multiple instructions
simultaneously

Application
Program

Compiler| OS

CPU
Design

Circuit
Design
Chip
Layout

35

Y86-64 Processor State

Stat: Program status

DMEM: Memory

CC:
RF: Program registers Condition
grax srsp %r8 $rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF(OF
$rdx $rsi $rl0 $rl4 PC
%rbx $rdi %rll

Program Registers

= 15 registers (omit $r15). Each 64 bits.

Condition Codes

= Single-bit flags set by arithmetic or logical instructions

— ZF: Zero

Program Counter

SF: Negative

» [ndicates address of next instruction

= Indicates either normal operation or some error condition

Memory

= Byte-addressable storage array

Program Status

= Words stored in little-endian byte order

OF: Overflow

32-bit integer

— a.

> g+1:

> qt2:

—>» q+3:

Little-endian

0A0BOCOD Memory

oD

0oC

0B

0A

36

I
Y86-64 Instruction Set #1

Byte 0 1 2 3 4 5 6 7 8 9
halt 010

nop 110

cmovXX rA, rB 2 | fn] rA| rB

irmovqg V, rB 3|0} F |rB \
rmmovqg rA, D(rB) 4 |0 |rA|TrB D
mrmovqg D (rB), rA 510 (|rA| rB D
OPg rA, rB 6 |[fn] rA| rB

JXX Dest 7 | fn Dest
call Dest 810 Dest

ret 910

pushqg rA A|O]JrA| F

popq rA B|O|rA|F

37

