
1Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

Course Overview

CSCI 237: Computer Organization
1st Lecture, Feb 7, 2025

Jeannie Albrecht

2

Overview

¢ Course theme
¢ Five realities
¢ How the course fits into the CS curriculum
¢ Course logistics and academic integrity

3

Course Theme:
Abstraction Is Good, But Don’t Forget Reality
¢ Most CS courses emphasize abstraction
§ Abstract data types
§ Asymptotic (Big O) analysis

¢ These abstractions have limits
§ Especially in the presence of bugs
§ Need to understand details of underlying implementations

¢ Useful outcomes from taking CS237
§ Become more effective programmers and scientists

§ Able to find and eliminate bugs efficiently
§ Able to understand and tune for program performance

§ Prepare for later “systems” classes in CS
§ Operating Systems (432), Distributed Systems (339), Security (331),

Storage Systems (333), Parallel Computing (338), Robotics (345)

4

Great Reality #1:
Ints are not Integers, Floats are not Reals

¢ Example 1: Is x2 ≥ 0?

§ Float’s: Yes!

§ Int’s:
§ 40000 * 40000 ➙ 1,600,000,000
§ 50000 * 50000 ➙ ??

¢ Example 2: Is (x + y) + z = x + (y + z)?
§ Unsigned & Signed Int’s: Yes!
§ Float’s:

§ (1e20 + -1e20) + 3.14 --> 3.14
§ 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

5

Computer Arithmetic

¢ Does not generate random values
§ Arithmetic operations have important mathematical properties

¢ Cannot assume all “usual” mathematical properties
§ Due to finiteness of representations
§ Integer operations satisfy “ring” properties

§ Commutativity, associativity, distributivity
§ Floating point operations satisfy “ordering” properties

§ Monotonicity, values of signs

¢ Observation
§ Need to understand which abstractions apply in which contexts
§ Important issues for compiler writers and serious application programmers

6

Great Reality #2:
You’ve Got to Know (a little) Assembly
¢ Chances are, you’ll never write programs in assembly
§ Compilers are much better & more patient than you are

¢ But: Understanding assembly is key to machine-level
execution model
§ Behavior of programs in presence of bugs

§ High-level language models break down
§ Tuning program performance

§ Understand optimizations done / not done by the compiler
§ Understanding sources of program inefficiency

§ Implementing system software
§ Compiler has machine code as target
§ Operating systems must manage process state

§ Creating / fighting malware
§ x86 assembly is the language of choice!

7

Great Reality #3: Memory Matters
Random Access Memory is an Unphysical Abstraction

¢ Memory is not unbounded
§ It must be allocated and managed
§ Many applications are memory dominated

¢ Memory referencing bugs especially pernicious
§ Effects are distant in both time and space

¢ Memory performance is not uniform
§ Cache and virtual memory effects can greatly affect program performance
§ Adapting program to characteristics of memory system can lead to major

speed improvements

8

Memory Referencing Bug Example

§ Result is system specific

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.0000006103516
fun(4) ➙ 3.14
fun(6) ➙ 3.14, Segmentation fault

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 volatile struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; /* Possibly out of bounds! */
 return s.d;
}

C code

9

Memory Referencing Bug Example
typedef struct {
 int a[2];
 double d;
} struct_t;

fun(0) ➙ 3.14
fun(1) ➙ 3.14
fun(2) ➙ 3.1399998664856
fun(3) ➙ 2.00000061035156
fun(4) ➙ 3.14
fun(6) ➙ 3.14, Segmentation fault

Location accessed by
fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

10

Memory Referencing Errors

¢ C and C++ do not provide any memory protection
§ Out of bounds array references
§ Invalid pointer values
§ Abuses of malloc/free

¢ Can lead to nasty bugs!
§ Whether or not bug has any effect depends on system and compiler
§ Action at a distance

§ Corrupted object logically unrelated to one being accessed
§ Effect of bug may be first observed long after it is generated

¢ How can I deal with this?
§ Program in Java, Python, Go, …
§ Understand what possible interactions may occur
§ Use or develop tools to detect referencing errors (e.g. Valgrind)

11

Great Reality #4: There’s more to
performance than asymptotic complexity

¢ Constant factors matter too!
¢ And even exact op count does not predict performance

§ Easily see 10:1 performance range depending on how code written
§ Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

¢ Must understand system to optimize performance
§ How programs are compiled and executed
§ How to measure program performance and identify bottlenecks
§ How to improve performance without destroying code modularity and

generality

12

Memory System Performance Example

¢ Hierarchical memory organization
¢ Performance depends on access patterns

§ Including how we step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048]) {

 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048]) {

 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

167ms48ms 2.9 GHz Intel Core i5

13

Why The Performance Differs

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

Re
ad

 th
ro

ug
hp

ut
 (M

B/
s)

Stride (x8 bytes)

copyij

copyji

14

Great Reality #5:
Computers do more than execute programs

¢ They need to get data in and out
§ I/O system critical to program reliability and performance

¢ They communicate with each other over networks
§ Many system-level issues arise in presence of network

§ Concurrent operations by autonomous processes
§ Coping with unreliable media
§ Cross platform compatibility
§ Complex performance issues

15

Course Perspective

¢ Most Systems Courses are Builder-Centric
§ Distributed Systems

§ Design programs that run on many machines at once
§ Operating Systems

§ Implement sample portions of operating system
§ Compilers

§ Write compiler for simple language
§ Networking

§ Implement and simulate network protocols

16

Course Perspective (Cont.)

¢ Our Course is Programmer-Centric
§ Purpose is to show that by knowing more about the underlying system,

one can be more effective as a programmer
§ Enable you to

§ Write programs that are more reliable and efficient
§ Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers
§ Cover material in this course that you won’t see elsewhere
§ Not just a course for dedicated hackers

§ We bring out the hidden hacker in everyone!

17

Role within CS Curriculum

CS 432
Operating
Systems

CS 345
Robotics

Processes
Mem. Mgmt

CS 338
Parallel

Computing

Concurrency

CS 333
Software
Systems

CS 134/136
Imperative

 Programming

CS 339
Distributed

Systems

CS 331
Security

Mem. Mgmt

Foundations of Computer Systems

Underlying principles for hardware,
software, and networking

Execution Model
Machine Code

237

Network Prog
Concurrency

Mem. Mgmt
Efficiency

CS 334
Program.

Lang.

Mem Mgmt

18

Administrative Details

¢ Attendance
¢ Course syllabus (see PDF on webpage)
¢ Lab: Wed and Thur 1-2:30 in Ward Lab (TBL 301)
§ Any volunteers to swap FROM Wed TO Thur lab?

¢ Instructor: jeannie@cs.willams.edu, TCL 305
¢ TAs (evening hours Sun-Thur, specific hours will be posted soon)
§ Michael Faulkner
§ Natalia Nolan
§ Nathan Vosburg
§ Charlie Tharas
§ Yanni Kakouris
§ Niklas Obermüller

mailto:jeannie@cs.willams.edu

19

Textbooks

¢ Randal E. Bryant and David R. O’Hallaron,
§ Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),

Pearson, 2016
§ http://csapp.cs.cmu.edu
§ This book really matters for the course!

§ How to solve labs
§ Practice problems typical of exam problems

¢ (optional) Brian Kernighan and Dennis Ritchie,
§ The C Programming Language, Second Edition, Prentice Hall, 1988
§ Still the best book about C, from the originators

20

Course Components
¢ Lectures

§ Mostly higher level concepts
§ Some info about important tools and skills for labs

¢ Weekly homework
§ On Glow, low stakes, test conceptual understanding, due Friday at noon

¢ Labs
§ The heart of the course
§ Challenging, but very rewarding and (hopefully) fun
§ 1-2 weeks each, mostly due on Tuesdays/Wednesdays
§ Provide in-depth understanding of an aspect of systems
§ Programming and measurement

¢ Exams (midterm + final)
§ Test your understanding of concepts & mathematical principles
§ Midterm: in lab on March 19/20
§ Final: scheduled

21

Getting Help

¢ Class Web page: http://www.cs.williams.edu/~jeannie/cs237
§ Complete schedule of lectures, exams, and assignments
§ Copies of lectures, labs, sample exams, etc
§ Clarifications to labs

¢ Glow
§ Use Glow for weekly homework
§ Occasional announcements

22

Getting Help

¢ Office hours
§ TBD – I will finalize by next week!

¢ 1:1 appointments with me
§ Open door policy (although I have lots of meetings…)
§ Email is best way to contact me

¢ TA hours
§ TBD
§ Probably every evening from ~7-10 (except Fri and Sat)

23

Policies: Labs And Exams

¢ Groupwork
§ You must work alone on all assignments unless otherwise noted
§ When in doubt, just ask!

¢ Submissions
§ Labs due at 11pm on date specified
§ Electronic handins using autograder submit script (details in lab next week)

¢ Exams
§ Closed book
§ Details to come later

¢ Discussing grades
§ We all make mistakes! Come see me asap to discuss.

24

Cheating: Description
¢ Please pay close attention! I take this VERY seriously.
¢ What is cheating?

§ Sharing code: by copying, retyping, looking at, or supplying a file
§ Describing: verbal description of code from one person to another
§ Coaching: helping your friend to write a lab, line by line
§ Searching the web or using ChatGPT for full or partial solutions
§ Copying code from a previous course or online solution (autograder checks for this)

§ You are only allowed to use code we supply, or from the CS:APP website

¢ What is NOT cheating?
§ Explaining how to use systems or tools
§ Helping others with high-level design issues (be sure to give credit)
§ Searching web/ChatGPT for specific error messages info
§ Using web/ChatGPT for finding data structure documentation

¢ See the course syllabus for more details.
§ Ignorance is not an excuse. When in doubt, ask!

25

Cheating: Consequences
¢ Penalty for cheating:
§ According to our Honor Code, if I suspect cheating, I must notify committee
§ If found guilty, probably will fail course
§ Permanent mark on your record

¢ Detection of cheating:
§ We have sophisticated tools for detecting code plagiarism
§ Some tools are automatically run via autograder

¢ Just don’t do it!
§ Start early and don’t fall behind
§ Ask for help when you get stuck

26

Facilities
¢ Labs will be held in Ward lab (TBL 301)
¢ Can also use the Linux machines in TCL 312

¢ brownswiss (off campus access)

¢ limia (off campus access)

¢ lohani (off campus access)

¢ angus (off campus access)

springer primrose pepper shiloh

ruth finch dolores antoinette

rita buttercup cashew dinah

dolly pippa kal molly

pika radish shadow pantalaimon

27

Timeliness

¢ Lateness penalties
§ Late lab submissions get penalized 20% per day
§ No submissions later than 4 days after due date

¢ Catastrophic events
§ Major illness, death in family, …
§ Come talk to me (and probably get help from a dean)

¢ Advice
§ Once you start running late/falling behind, it’s really hard to catch up

28

Other Rules of the Classroom

¢ Laptops permitted for note taking

¢ Electronic communications
§ No email, instant messaging, texting, cell phone calls, etc, during class
§ Distracting to everyone around you

¢ Presence in lectures and labs is required
§ Let me know if you need to miss for any reason

¢ I don’t mind if you eat in class
§ Just don’t distract others
§ Avoid bringing food to lab if possible

29

Policies: Grading

¢ Exams (60%): midterm (30%), final (30%)

¢ Labs (30%): weighted (slightly) according to effort

¢ Homework (10%): weekly low stakes assignment on Glow

30

Programs and Data

¢ Topics
§ Bits operations, arithmetic, assembly language programs
§ Representation of C control and data structures
§ Includes aspects of architecture and compilers

¢ Assignments (probably)
§ L1 (datalab): Manipulating bits
§ L2 (bomblab): Defusing a binary bomb
§ L3 (archlab): Closer look at assembly code

31

The Memory Hierarchy

¢ Topics
§ Memory technology, memory hierarchy, caches, disks, locality
§ Includes aspects of architecture and OS

¢ Assignments
§ L4 (cachelab): Building a cache simulator and optimizing for locality.

§ Learn how to exploit locality in your programs.

33

Virtual Memory

¢ Topics
§ Virtual memory, address translation, dynamic storage allocation
§ Includes aspects of architecture and OS

¢ Assignments
§ L5 (malloclab): Writing your own malloc package

§ Get a real feel for systems-level programming

34

Networking, and Concurrency

¢ Topics
§ High level and low-level I/O, network programming
§ Internet services, Web servers
§ concurrency, concurrent server design, threads
§ I/O multiplexing with select
§ Includes aspects of networking, OS, and architecture

¢ Assignments
§ L6 (echoserver): Brief intro to threads, processes, and sockets

35

Lab Rationale

¢ Each lab has a well-defined goal such as solving a puzzle or
winning a contest

¢ Doing the lab should result in new skills and concepts

¢ We try to use competition in a fun and healthy way
§ Set a reasonable threshold for full credit
§ Optionally post intermediate results (anonymized) on scoreboard for glory!

36

Welcome and enjoy!

