
Problem 1. (10 points):
General systems concepts. Write the correct answer for each question in the following table:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

1. Consider the following code, what is the output of the printf?

int x = 0x15213F10 >> 4;
char y = (char) x;
unsigned char z = (unsigned char) x;
printf("%d, %u", y, z);

(a) -241, 15
(b) -15, 241
(c) -241, 241
(d) -15, 15

2. In two’s compliment, what is −TMin?

(a) Tmin

(b) Tmax

(c) 0

(d) −1

3. Let int x = −31/8 and int y = −31 >> 3. What are the values of x and y?

(a) x = −3, y = −3

(b) x = −4, y = −4

(c) x = −3, y = −4

(d) x = −4, y = −3

4. In C, the expression ”15213U > −1” evaluates to:

(a) True (1)
(b) False (0)

5. In two’s compliment, what is the minimum number of bits needed to represent the numbers -1 and the
number 1 respectively?

(a) 1 and 2
(b) 2 and 2
(c) 2 and 1
(d) 1 and 1

Page 1 of 11

Jeannie Albrecht
The questions shown below are provided by the textbook authors. Not all of them are relevant to CSCI 237. You
may safely ignore the ones that have been greyed out or removed.

6. Consider the following program. Assuming the user correctly types an integer into stdin, what will
the program output in the end?

#include <stdio.h>
int main(){

int x = 0;
printf("Please input an integer:");
scanf("%d",x);
printf("%d", (!!x)<<31);

}

(a) 0
(b) TMin

(c) Depends on the integer read from stdin
(d) Segmentation fault

7. By default, on Intel x86, the stack

(a) Is located at the bottom of memory.
(b) Grows down towards smaller addresses
(c) Grows up towards larger addresses
(d) Is located in the heap

8. Which of the following registers stores the return value of functions in Intel x86 64?

(a) %rax
(b) %rcx
(c) %rdx
(d) %rip
(e) %cr3

9. The leave instruction is effectively the same as which of the following:

(a) mov %ebp, %esp
pop %ebp

(b) pop %eip
(c) mov %esp, %ebp

pop %esp
(d) ret

10. Arguments to a function, in Intel IA32 assembly, are passed via

(a) The stack
(b) Registers
(c) Physical memory
(d) The .text section
(e) A combination of the stack and registers.

Page 2 of 11

Jeannie Albrecht

Jeannie Albrecht

11. A buffer overflow attack can only be executed against programs that use the gets function.

(a) True
(b) False

12. Intel x86 64 systems are

(a) Little endian
(b) Big endian
(c) Have no endianess
(d) Depend on the operating system

13. Please fill in the return value for the following function calls on both an Intel IA32 and Intel x86 64
system:
Function Intel IA32 Intel x86 64
sizeof(char)
sizeof(int)
sizeof(void *)
sizeof(int *)

14. Select the two’s complement negation of the following binary value: 0000101101:

(a) 1111010011
(b) 1111010010
(c) 1000101101
(d) 1111011011

15. Which line of C-code will perform the same operation as leal 0x10(%rax,%rcx,4),%rax?

(a) rax = 16 + rax + 4*rcx
(b) rax = *(16 + rax + 4*rcx)
(c) rax = 16 + *(rax + 4*rcx)
(d) *(16 + rcx + 4*rax) = rax
(e) rax = 16 + 4*rax + rcx

16. Which line of Intel x86-64 assembly will perform the same operation as rcx = ((int *)rax)[rcx]?

(a) mov (%rax,%rcx,4),%rcx
(b) lea (%rax,%rcx,4),%rcx
(c) lea (%rax,4,%rcx),%rcx
(d) mov (%rax,4,%rcx),%rcx

17. If a is of type (int) and b is of type (unsigned int), then (a < b) will perform

(a) An unsigned comparison.
(b) A signed comparison.
(c) A segmentation fault.
(d) A compiler error.

Page 3 of 11

Jeannie Albrecht

Jeannie Albrecht

Jeannie Albrecht

18. Denormalized floating point numbers are

(a) Very close to zero (small magnitude)
(b) Very far from zero (large magnitude)
(c) Un-representable on a number line
(d) Zero.

19. What is the difference between an arithmetic and logical right shift?

(a) C uses arithmetic right shift; Java uses logical right shift.
(b) Logical shift works on 32 bit data; arithmetic shift works on 64 bit data.
(c) They fill in different bits on the left
(d) They are the same.

20. Which of the following assembly instructions is invalid in Intel IA32 Assembly?

(a) pop %eip
(b) pop %ebp
(c) mov (%esp),%ebp
(d) lea 0x10(%esp),%ebp

Page 4 of 11

Jeannie Albrecht

Problem 2. (10 points):
Floating point encoding. Consider the following 5-bit floating point representation based on the IEEE
floating point format. This format does not have a sign bit – it can only represent nonnegative numbers.

• There are k = 3 exponent bits. The exponent bias is 3.

• There are n = 2 fraction bits.

Recall that numeric values are encoded as a value of the form V = M × 2E , where E is the exponent after
biasing, and M is the significand value. The fraction bits encode the significand value M using either a
denormalized (exponent field 0) or a normalized representation (exponent field nonzero). The exponent E
is given by E = 1 − Bias for denormalized values and E = e − Bias for normalized values, where e is the
value of the exponent field exp interpreted as an unsigned number.

Below, you are given some decimal values, and your task it to encode them in floating point format. In
addition, you should give the rounded value of the encoded floating point number. To get credit, you must
give these as whole numbers (e.g., 17) or as fractions in reduced form (e.g., 3/4). Any rounding of the
significand is based on round-to-even, which rounds an unrepresentable value that lies halfway between
two representable values to the nearest even representable value.

Value Floating Point Bits Rounded value

9/32 001 00 1/4

1

12

11

1/8

7/32

Page 5 of 11

Problem 5. (10 points):
Switch statement encoding. Consider the following C code and assembly code for a strange but simple
function:

int lol(int a, int b) 40045c <lol>:
{ 40045c: lea -0xd2(%rdi),%eax

switch(a) 400462: cmp $0x9,%eax
{ 400465: ja 40048a <lol+0x2e>

case 210: 400467: mov %eax,%eax
b *= 13; 400469: jmpq *0x400590(,%rax,8)
________ 400470: lea (%rsi,%rsi,2),%eax

case 213: 400473: lea (%rsi,%rax,4),%eax
b = 18243; 400476: retq
________ 400477: mov $0x4743,%esi

case 214: 40047c: mov %esi,%eax
b *= b; 40047e: imul %esi,%eax
________ 400481: retq

case 216: 400482: mov %esi,%eax
case 218: 400484: sub %edi,%eax

b -= a; 400486: retq
________ 400487: add $0xd,%esi

case 219: 40048a: lea -0x9(%rsi),%eax
b += 13; 40048d: retq

default:
b -= 9;

}

return b;
}

Using the available information, fill in the jump table below. (Feel free to omit leading zeros.) Also, for
each case in the switch block which should have a break, write break on the corresponding blank line.

Hint: 0xd2 = 210 and 0x4743 = 18243.

0x400590: ________________ 0x400598: ________________

0x4005a0: ________________ 0x4005a8: ________________

0x4005b0: ________________ 0x4005b8: ________________

0x4005c0: ________________ 0x4005c8: ________________

0x4005d0: ________________ 0x4005d8: ________________
Page 8 of 11

Jeannie Albrecht
This one is more complicated than anything you’ll be asked.

