CSE 351

Section 9

Dynamic Memory Allocation



Dynamic Memory

* Dynamic memory is memory that is “requested” at
run-time

* Solves two fundamental dilemmas:

 How can we control the amount memory used based on
run time conditions?

 How can we control the lifetime of memory?

* Important to understand how dynamic memory
works:
* We want to use allocators efficiently
e Can result in many errors if used incorrectly



Example Program

* Dynamically adds/removes/sorts nodes in a large
linked list

* Without dynamically-allocated memory:

* Use the mmap () or equivalent system call to map a
virtual address to a page of physical memory

* This essentially gives you a page of memory to use

Use pointer addition/subtraction to segment the page
into linked list nodes

Manage which regions of the page have been used
Request a new page when that one fills up

Get fired from your job

MESSY! NOBODY DOES THIS!



Example Program

* With dynamically-allocated memory:

e Usemalloc () from the Cstandard library to request a
node-sized chunk of memory for every node in the
linked list

* When removing a node, simply carry out the necessary
pointer manipulation and use free() to allow that
space to be used for something else

e Keep your job!

* You will come tolovemalloc () because it does
all the heap management for you...

e ...But for the next week you will hate it, because
you are in charge of implementing it



malloc ()

* Provided to you by the C standard library using
#include <stdlib.h>

* Programs allocate blocks from the heap by calling the

malloc () function
* The heap is the memory region dedicated to dynamic storage

* Howtousemalloc ():

* Takesa size t representing the number of bytes requested

e Returns a void* pointing to the start of the block or NULL if
there was an error

int* array = (int*) malloc (10 * sizeof(int)) ;



free ()

Also part of the C standard library

* Programmers also need to be able to “free up” dynamically-
allocated memory that they no longer need

* Simply pass free () a pointer to a block received from
malloc ()
* Using free () allows for more efficient heap usage
e Subsequent callstomalloc () will be able to re-use that block

Double-free
* This occurs when you free the same block twice
It usually results in a segmentation fault

* We will see why that might occur when we look at howmalloc ()
is implemented



The Heap

 What does the heap look like exactly?
* Imagine a giant contiguous region of memory

 This region is segmented into free blocks and used
blocks
* The free blocks form an explicit, doubly-linked list

* To allocate a block, we remove it from the list and return
a pointer to it

* To free a block, we insert it back into the list



Block Header

* Every block has a 64-bit header

* Three of those bits are used for tags
e LSBis set if the block is currently used (not in the free list)

* Next t()jit (to the left) is set if the block preceding it in memory
is use

* The third bit is not used
* The upper 61 bits store the size of the block

e This 64-bit value is also referred to as the block’s
“sizeAndTags”



Free Blocks

e A free block has:

* A sizeAndTags value on either side of the free space.
* Pointers to the next and previous blocks in the list

Remember, the blocks are not necessarily in address order, so
the pointers can point to blocks anywhere in the heap

e Each free block is a Blockinfo struct followed by free
space and the boundary tag (footer)

sizeAndTags

struct BlockInfo {
struct BlockInfo *next

Size_t SizeAndTagS; struct BlockInfo *prev

struct BlockInfo* next;

struct BlockInfo* prev; Free space

Y sizeAndTags




Used Blocks

* Used blocks only have a sizeAndTags, followed by
the payload

* The payload is the actual block of memory returned
to a user program that invokesmalloc ()

int* a = (int*) malloc (10 * sizeof (int)) ;

* This means a points to
the payload

sizeAndTags

Payload




Putting it All Together

Initial 128-byte heap layout:

* BlockInfo* FREE LIST HEAD always points to the first block
in the free list

* The BlockInfo for this free block would look like this:
* sizeAndTags: 130 (128 + 0x2)
* next: null
e prev: null

* The PrecedingUsed tag is set because the previous block is not free
(comes into play when we look at coalescing later)

Size: 128, Preceding Used: 1, Used: O

N

FREE LIST HEAD




Note: “a” does not point to

Allocating Blocks — seandaest poins o payioas, o

where the “next” pointer would be
stored in the BlockInfo

vold* a = malloc (32)
e Searches the free list for a block big enough
* The first (and only) block is 128 bytes, which will work

* Bad implementation: return a 120-byte payload (8-byte
header)

* Good implementation: split off 40 bytes, return a 32-
byte payload

40:1:1 88:1:0

7 ,

FREE LIST HEAD

Q




Allocating Blocks

vold* b = malloc(1l0o)

* Only needs a block of 16 + 8 = 24 bytes, but if we
were to free this block in the future, we would
need at least 32 bytes to create a free block.

* The minimum block size is 32 bytes

40:1:1 32:1:1 56:1:0

Q
o)

FREE LIST HEAD




Allocating Blocks

vold* ¢ = malloc (48)
 FREE_LIST_HEAD = null




Freeing Blocks

free (b)
* Inserts block b into the beginning of the free list

* Notice how the tags in the block after needed to be
updated

32:1:0

a FREE LIST HEAD ¢ .



Freeing Blocks

free(c)

* Is this what the heap should look like at the end of
free(c)?

.~ N\

40:1:1 32:1:0 56:0:0

Q

REE LIST HEAD




Coalesce Free Blocks

When we have multiple free blocks adjacent to each
other in memory, we should coalesce them.

* Coalescing basically combines free blocks together

* Bigger blocks are always better; a large block can
satisfy both large and smallmalloc () requests

40:1:1 88:1:0

7 ,

FREE LIST HEAD

Q




Llab 5

Implementmalloc () and free ()

e Before you start to feel

overwhelmed... MAN, | 5UCK AT THIS GAME.
| . CAN YOU GIVE ME.
* We give you many functions A FEW POINTERS?
lready including: 0x3A28213A
aiready g. l 0x6339292C,
* searchfreeliist () Ox7363682E.
* insertFreeBlock () [ HATE YOU. /

* removeFlFreeBlock () \

e coalesceFreeBlock () M

requestMoreSpace ()

18



Implementingmalloc ()

* Figure out how big a block you need

* Call searchFreelList () to get a free block that
is large enough

 NOTE: If you request 16 bytes, it might give you a block
that is 500 bytes

* Remove that block from the list
* Update size + tags appropriately
e Return a pointer to the payload of that block



Implementing free ()

* Remember, the pointer you are passed is to the
payload

e Convert the given used block into a free block
* Insert it into the free list
* Update size + tags appropriately

* Coalesce if necessary by calling
coalescelFreeBlock ()



Macros

* Pre-compile time “find and replace”

* Define constants:

* #define NUM_ENTRIES 100
* OK

* Define simple operations:
 #idefine twice(x) 2*x
* Not OK
* twice(x+1) becomes 2*x+1
 #define twice(x) (2*(x))
* OK

* Always wrap in parentheses; it’s a naive search-and-
replace!



Macros

* Why macros?
e “Faster” than function calls
* Why?
* For malloc
e Quick access to header information (payload size, valid)

 Drawbacks

* Less expressive than functions

* Arguments are not typechecked, local variables
* This can easily lead to errors that are more difficult to find



Some Provided Macros

UNSCALED POINTER ADD (p, X)
Add without using “pointer arithmetic”

UNSCALED POINTER SUB (p, x)
Subtract without using “pointer arithmetic”

MIN_BLOCK_SIZE

The size of the smallest block that is safe to allocate

SIZE (x)
Gets the size from ‘sizeAndTags’

TAG USED
Mask for the used tag

TAG PRECEDING USED
Mast for the preceding used tag

There are more. Don’t forget to use them!



Running the PreProcessor

* Run gcc with the -E switch

 Executes all preprocessor instructions
* Lines that start with #
e #include
* #define
e #ifdef
* etc

e Qutputs as a c file
gcc -E -P foo.c > bar.c



Starter code

* We'll now go through some of the starter code
included in the assignment

* If you are struggling to understand where to get
started, read through coalesceFreeBlock ()

* If you can understand this function, you will understand
everything
* Make sure you use the provided macros
* They work, so it will help minimize bugs
* More readable code



