
CSE 351
Section 9

Dynamic Memory Allocation

Dynamic Memory

• Dynamic memory is memory that is “requested” at
run-time

• Solves two fundamental dilemmas:
• How can we control the amount memory used based on

run time conditions?

• How can we control the lifetime of memory?

• Important to understand how dynamic memory
works:
• We want to use allocators efficiently

• Can result in many errors if used incorrectly

2

Example Program
• Dynamically adds/removes/sorts nodes in a large

linked list

• Without dynamically-allocated memory:
• Use the mmap() or equivalent system call to map a

virtual address to a page of physical memory
• This essentially gives you a page of memory to use

• Use pointer addition/subtraction to segment the page
into linked list nodes

• Manage which regions of the page have been used

• Request a new page when that one fills up

• Get fired from your job

• MESSY! NOBODY DOES THIS!

3

Example Program

• With dynamically-allocated memory:
• Use malloc() from the C standard library to request a

node-sized chunk of memory for every node in the
linked list

• When removing a node, simply carry out the necessary
pointer manipulation and use free() to allow that
space to be used for something else

• Keep your job!

• You will come to love malloc() because it does
all the heap management for you…

• …But for the next week you will hate it, because
you are in charge of implementing it

4

malloc()

• Provided to you by the C standard library using
#include <stdlib.h>

• Programs allocate blocks from the heap by calling the
malloc()function
• The heap is the memory region dedicated to dynamic storage

• How to use malloc():
• Takes a size_t representing the number of bytes requested

• Returns a void* pointing to the start of the block or NULL if
there was an error

5

int* array = (int*) malloc(10 * sizeof(int));

free()

• Also part of the C standard library

• Programmers also need to be able to “free up” dynamically-
allocated memory that they no longer need

• Simply pass free() a pointer to a block received from
malloc()

• Using free() allows for more efficient heap usage
• Subsequent calls to malloc() will be able to re-use that block

• Double-free
• This occurs when you free the same block twice
• It usually results in a segmentation fault
• We will see why that might occur when we look at how malloc()

is implemented

6

The Heap

• What does the heap look like exactly?
• Imagine a giant contiguous region of memory

• This region is segmented into free blocks and used
blocks
• The free blocks form an explicit, doubly-linked list

• To allocate a block, we remove it from the list and return
a pointer to it

• To free a block, we insert it back into the list

7

Block Header

• Every block has a 64-bit header
• Three of those bits are used for tags

• LSB is set if the block is currently used (not in the free list)
• Next bit (to the left) is set if the block preceding it in memory

is used
• The third bit is not used

• The upper 61 bits store the size of the block
• This 64-bit value is also referred to as the block’s

“sizeAndTags”

8

+---+

| 63 | 62 | 61 | 60 | | 2 | 1 | 0 |

+---+

^ ^

high bit low bit

Free Blocks

• A free block has:
• A sizeAndTags value on either side of the free space.
• Pointers to the next and previous blocks in the list
Remember, the blocks are not necessarily in address order, so
the pointers can point to blocks anywhere in the heap

• Each free block is a BlockInfo struct followed by free
space and the boundary tag (footer)

9

sizeAndTags

struct BlockInfo *next

struct BlockInfo *prev

Free space

sizeAndTags

struct BlockInfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlockInfo* prev;

};

Used Blocks

• Used blocks only have a sizeAndTags, followed by
the payload

• The payload is the actual block of memory returned
to a user program that invokes malloc()

10

sizeAndTags

Payload

int* a = (int*) malloc(10 * sizeof(int));

• This means a points to
the payload

Putting it All Together

Initial 128-byte heap layout:

• BlockInfo* FREE_LIST_HEAD always points to the first block
in the free list

• The BlockInfo for this free block would look like this:
• sizeAndTags: 130 (128 + 0x2)
• next: null
• prev: null

• The PrecedingUsed tag is set because the previous block is not free
(comes into play when we look at coalescing later)

11

Size: 128, Preceding Used: 1, Used: 0

FREE_LIST_HEAD

Allocating Blocks

void* a = malloc(32)

• Searches the free list for a block big enough

• The first (and only) block is 128 bytes, which will work

• Bad implementation: return a 120-byte payload (8-byte
header)

• Good implementation: split off 40 bytes, return a 32-
byte payload

12

88:1:040:1:1

a FREE_LIST_HEAD

Note: “a” does not point to
sizeAndTags! Points to payload, or
where the “next” pointer would be
stored in the BlockInfo

Allocating Blocks

void* b = malloc(16)

• Only needs a block of 16 + 8 = 24 bytes, but if we
were to free this block in the future, we would
need at least 32 bytes to create a free block.

• The minimum block size is 32 bytes

13

56:1:040:1:1 32:1:1

b FREE_LIST_HEADa

Allocating Blocks

void* c = malloc(48)

• FREE_LIST_HEAD = null

14

56:1:140:1:1 32:1:1

ca b

Freeing Blocks

free(b)

• Inserts block b into the beginning of the free list

• Notice how the tags in the block after needed to be
updated

15

56:0:140:1:1 32:1:0

FREE_LIST_HEADa c

Freeing Blocks

free(c)

• Is this what the heap should look like at the end of
free(c)?

16

56:0:040:1:1 32:1:0

FREE_LIST_HEADa

Coalesce Free Blocks

When we have multiple free blocks adjacent to each
other in memory, we should coalesce them.

• Coalescing basically combines free blocks together

• Bigger blocks are always better; a large block can
satisfy both large and small malloc() requests

17

88:1:040:1:1

FREE_LIST_HEADa

Lab 5

Implement malloc() and free()

• Before you start to feel
overwhelmed…

• We give you many functions
already including:
• searchFreeList()

• insertFreeBlock()

• removeFreeBlock()

• coalesceFreeBlock()

• requestMoreSpace()

18

Implementing malloc()

• Figure out how big a block you need

• Call searchFreeList() to get a free block that
is large enough
• NOTE: If you request 16 bytes, it might give you a block

that is 500 bytes

• Remove that block from the list

• Update size + tags appropriately

• Return a pointer to the payload of that block

19

Implementing free()

• Remember, the pointer you are passed is to the
payload

• Convert the given used block into a free block

• Insert it into the free list

• Update size + tags appropriately

• Coalesce if necessary by calling
coalesceFreeBlock()

20

Macros

• Pre-compile time “find and replace”

• Define constants:
• #define NUM_ENTRIES 100

• OK

• Define simple operations:
• #define twice(x) 2*x

• Not OK
• twice(x+1) becomes 2*x+1

• #define twice(x) (2*(x))
• OK

• Always wrap in parentheses; it’s a naive search-and-
replace!

21

Macros

• Why macros?
• “Faster” than function calls

• Why?

• For malloc
• Quick access to header information (payload size, valid)

• Drawbacks
• Less expressive than functions

• Arguments are not typechecked, local variables
• This can easily lead to errors that are more difficult to find

22

Some Provided Macros

• UNSCALED_POINTER_ADD(p,x)
Add without using “pointer arithmetic”

• UNSCALED_POINTER_SUB(p,x)
Subtract without using “pointer arithmetic”

• MIN_BLOCK_SIZE
The size of the smallest block that is safe to allocate

• SIZE(x)
Gets the size from ‘sizeAndTags’

• TAG_USED
Mask for the used tag

• TAG_PRECEDING_USED
Mast for the preceding used tag

• There are more. Don’t forget to use them!

23

Running the PreProcessor

• Run gcc with the -E switch

• Executes all preprocessor instructions
• Lines that start with #

• #include

• #define

• #ifdef

• etc

• Outputs as a c file
gcc -E -P foo.c > bar.c

24

Starter code

• We’ll now go through some of the starter code
included in the assignment

• If you are struggling to understand where to get
started, read through coalesceFreeBlock()
• If you can understand this function, you will understand

everything

• Make sure you use the provided macros
• They work, so it will help minimize bugs

• More readable code

25

