
1

Cache Lab Helpful Hints
Jeannie Albrecht

• Code samples taken from www.tutorialspoint.com

2

fgets and fopen

¢ FILE *fp is a file pointer
¢ fopen opens files for

reading/writing
¢ fgets reads file from
stream and stores in
char array

¢ fclose closes file pointer
(always close file
pointers!)

#include <stdio.h>

int main () {
FILE *fp;
char str[60];

/* opening file for reading */
fp = fopen("file.txt" , "r");
if(fp == NULL) {

perror("Error opening file");
return(-1);

}

if(fgets (str, 60, fp)!=NULL) {
/* writing content to stdout */
printf(“%s\n”,str);

}
fclose(fp);

return(0);
}

3

sscanf

¢ sscanf reads
formatted input
from string

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main () {
 int day, year;
 char weekday[20], month[20], dtm[100];

 strcpy(dtm, "Saturday March 25 1989");
 sscanf(dtm, "%s %s %d %d", weekday,
 month, &day, &year);

 printf("%s %d, %d = %s\n",
 month, day, year, weekday);

 return(0);
}

Pointers!

4

getopt

¢ Used to parse
command line
options

¢ ./hello –a –c 4
¢ “:” in getopt string

“ac:” indicates that
an additional piece
of info is expected
after “c”

int main (int argc, char **argv) {
 int c;
 char *cvalue = NULL;

while ((c = getopt
 (argc, argv, “ac:”)) != -1)

switch (c) {
case 'a’:

 //do something
 break;

 case 'c':
 cvalue = optarg;

break;
 default:

 //do something
}

}

5

Cache lab in a nutshell

¢ Define a struct(s) for representing your cache
¢ Write/review functions for:
§ main (get command line options, open trace file, read trace file, etc)
§ Initializing cache (i.e., malloc space for cache)
§ Freeing cache (i.e., any allocated memory must be freed)
§ Running simulation (update the flags of our cache accordingly)
§ Other helper functions as needed

6

Hints

¢ What is a cache?
§ An array of cache sets

¢ What is a cache set?
§ An array of cache lines

¢ What is a cache line?
§ Valid bit, tag, block
§ Note that we are only simulating a cache in Lab 5, so we don’t need to

represent the actual data blocks
§ Might need a little extra info to implement LRU
§ Probably want a struct to keep track of this!

Set 0
Set 1
Set 2
Set 3

Line 0
Line 1

Line 0
Line 1

Line 0
Line 1

Line 0
Line 1

cache

7

Hints

¢ What is a cache?
§ An array of cache sets
§ cache = malloc(S * sizeof(cache set))

¢ What is a cache set?
§ An array of cache lines
§ cache[i] = malloc(E * sizeof(cache line))

¢ What is a cache line?
§ Valid bit, tag, block
§ Note that we are only simulating a cache in Lab 5, so we don’t need to

represent the actual data blocks
§ Might need a little extra info to implement LRU
§ Probably want a struct to keep track of this!

cache[0]

Set 1
Set 2
Set 3

cache[0][0]
Line 1

cache
Line 0
Line 1

Line 0
Line 1

Line 0
Line 1

8

Getting Started

¢ Figure out how to read from trace files
¢ Plan cache line struct
¢ Think about how you’ll implement LRU algorithm

