Lab 4 Overview

CSCl 237: Computer Organization
Apr 9/10, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

I
Lab 4 Goals

m Finally start digging into C programming (yay!)
m Learn about malloc and free
m Learn how to use structs

m Learn about bitmaps

0000000O0OOOOOOO0OD
00000000000000000
00000000O0O0OO0OO0O0OO

C 1 00000000000000000
= Random aside: 0000000000000000 0jSE

. . o 00000000000000000[8
" uint64 _t values are basically just ints 00000000000000001

.

[
e

" Print them with %lu 00000000000000100
00000000000001000
00000000000010000
00000000000100000
oooooooooottrt1 T
00000000000000000
00000000000000000

Memory Management

m Some languages automatically manage memory
= Python and Java have garbage collectors
® Run in the background to “reap” memory that is no longer being used

m We have to manage our own memory in C
= Sounds scary, but provides us with full control of our programs
* We allocate memory that we need, and free it when we’re finished

m Question:
* We already know about the stack. Why isn’t this enough?

Memory Management

m Some languages automatically manage memory
= Python and Java have garbage collectors
® Run in the background to “reap” memory that is no longer being used

m We have to manage our own memory in C
= Sounds scary, but provides us with full control of our programs
* We allocate memory that we need, and free it when we’re finished

m Question:
* We already know about the stack. Why isn’t this enough?

= Stack frames facilitate the passing of information between function calls

* But what happens when a function returns?

Memory Management

m Some languages automatically manage memory
= Python and Java have garbage collectors

® Run in the background to “reap” memory that is no longer being used

m We have to manage our own memory in C
= Sounds scary, but provides us with full control of our programs
* We allocate memory that we need, and free it when we’re finished

m Question:
* We already know about the stack. Why isn’t this enough?

= Stack frames facilitate the passing of information between function calls

* But what happens when a function returns?

® The stack is popped and memory can be used for other things!

Stack vs Heap Memory Allocation

m If we want to allocate memory for Highaddress
data that persists beyond a stack

frame, we allocate memory from a StaCk
different portion of memory called I
the heap
m The heap and stack are both parts t
of memory | hesp |
m Unlike the stack, heap memory is Unitialize data

dynamically allocated and
deallocated explicitly by
programmers Low address text

Initialized data

Allocating Space in the Heap: malloc

#include <stdio.h>

#include <stdlib.h>
We pass malloc the

int main(void) { number of bytes we need
char *str; /to allocate. It returns a
str = malloc(100 * sizeof(char)); pointer (e.g., an address)
str[0] = 'm'; to the beginning of that
printf("heap memory: %c\n", str[0]); chunk of memory. In this
free(str); case, the chunk has size
return @; 100 bytes.

malloc does not initialize the memory. That is done separately if needed.

Deallocating Space in the Heap: free

#include <stdio.h>
#include <stdlib.h>

int main(void) { After we are finished with
char *str; the memory, we must
str = malloc(100 * sizeof(char)); deallocate it, making it
str[@] = 'm'; available for other uses.
printf("heap memory: %c\n", str[@]); Failure to deallocate results
free(str); ‘ in a memory leak. We
return 0; deallocate with free, and

} pass the pointer to the

memory chunk being freed.

Golden rule: Every malloc should have exactly one corresponding free.

Allocating and Deallocation structs

m structs contain one or more fields
m We have discussed struct memory allocation rules
m structs are often allocated in the heap

m Be careful when allocating structs containing pointers to other
dynamically allocated structs/arrays!

m Always work from “outside in” when allocating
m Always work from “inside out” when freeing

struct container {
int num;
unsigned char *values; // a char array of size num

};

int main(int argc, char *argv[]) {
// allocate space for container first
struct container *contain = malloc(sizeof (struct container));
if (contain == NULL) { //always check for malloc error
return -1;

}
Notation reminder:

// get command line argument for size

contain->num = atoi(argv[1l]); // convert argument to int Since Contain iS d
// now allocate space for char array with num values pOinter! we use
contain->values = malloc(contain->num * sizeof(char)); -> tO reference the
if (contain->values == NULL) { // malloc error]]

} return -1; fields in the struct. If

contain was not a
// “initialize” memory (in this case, set all values to 0) .
memset(contain->values, @, contain->num); p0|nter, you WOUId use .

. to reference the fields.

contain->values[@] = 'h';
printf("Values: %s\n", contain->values);

// free internal structs first, outer struct last
free(contain->values);
free(contain);

Checking for memory leaks with valgrind

-> valgrind --leak-check=yes struct-malloc 5
==454843== Command: struct-malloc 5
==454843== HEAP SUMMARY:

==454843== in use at exit: © bytes in © blocks

==454843== total heap usage: 3 allocs, 3 frees, 1,045 bytes allocated
==454843==

==454843== All heap blocks were freed -- no leaks are possible
==454843==

==454843== For lists of detected and suppressed errors, rerun with: -s
==454843== ERROR SUMMARY: © errors from © contexts (suppressed: © from 0)

11

-]
Checking for memory leaks with valgrind

(after removing “free” to create leaks)

-> valgrind --leak-check=yes struct-malloc 5

==454715== Command: struct-malloc 5

==454715== HEAP SUMMARY:

==454715== in use at exit: 21 bytes in 2 blocks
==454715== total heap usage: 3 allocs, 1 frees, 1,045 bytes allocated
==454715==

==454715== 21 (16 direct, 5 indirect) bytes in 1 blocks are definitely lost in loss

record 2 of 2
==454715== LEAK SUMMARY':

==454715== definitely lost:
==454715== indirectly lost:
==454715== possibly lost:
==454715== still reachable:
==454715== suppressed:
==454715==

==454715== For lists of detected
==454715== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: © from 0)

16 bytes in 1 blocks

5 bytes
@ bytes
@ bytes
@ bytes

in
in
in

in

1 blocks
@ blocks
@ blocks
@ blocks

and suppressed errors, rerun with: -s

12

