
1

Lab 4 Overview

CSCI 237: Computer Organization
Apr 9/10, 2025

Jeannie Albrecht

Slides originally designed by Bryant and O’Hallaron @ CMU for use with Computer Systems: A Programmer’s Perspective, Third Edition

2

Lab 4 Goals

¢ Finally start digging into C programming (yay!)
¢ Learn about malloc and free
¢ Learn how to use structs
¢ Learn about bitmaps

¢ Random aside:
§ uint64_t values are basically just ints
§ Print them with %lu

3

Memory Management

¢ Some languages automatically manage memory
§ Python and Java have garbage collectors
§ Run in the background to “reap” memory that is no longer being used

¢ We have to manage our own memory in C
§ Sounds scary, but provides us with full control of our programs
§ We allocate memory that we need, and free it when we’re finished

¢ Question:
§ We already know about the stack. Why isn’t this enough?

4

Memory Management

¢ Some languages automatically manage memory
§ Python and Java have garbage collectors
§ Run in the background to “reap” memory that is no longer being used

¢ We have to manage our own memory in C
§ Sounds scary, but provides us with full control of our programs
§ We allocate memory that we need, and free it when we’re finished

¢ Question:
§ We already know about the stack. Why isn’t this enough?

§ Stack frames facilitate the passing of information between function calls
§ But what happens when a function returns?

5

Memory Management

¢ Some languages automatically manage memory
§ Python and Java have garbage collectors
§ Run in the background to “reap” memory that is no longer being used

¢ We have to manage our own memory in C
§ Sounds scary, but provides us with full control of our programs
§ We allocate memory that we need, and free it when we’re finished

¢ Question:
§ We already know about the stack. Why isn’t this enough?

§ Stack frames facilitate the passing of information between function calls
§ But what happens when a function returns?

§ The stack is popped and memory can be used for other things!

6

Stack vs Heap Memory Allocation

¢ If we want to allocate memory for
data that persists beyond a stack
frame, we allocate memory from a
different portion of memory called
the heap

¢ The heap and stack are both parts
of memory

¢ Unlike the stack, heap memory is
dynamically allocated and
deallocated explicitly by
programmers

7

Allocating Space in the Heap: malloc

#include <stdio.h>
#include <stdlib.h>

int main(void) {
char *str;
str = malloc(100 * sizeof(char));

 str[0] = 'm';
 printf("heap memory: %c\n", str[0]);
 free(str);
 return 0;
}

We pass malloc the
number of bytes we need
to allocate. It returns a

pointer (e.g., an address)
to the beginning of that

chunk of memory. In this
case, the chunk has size

100 bytes.

malloc does not initialize the memory. That is done separately if needed.

8

Deallocating Space in the Heap: free

#include <stdio.h>
#include <stdlib.h>

int main(void) {
 char *str;
 str = malloc(100 * sizeof(char));
 str[0] = 'm';
 printf("heap memory: %c\n", str[0]);

free(str);
 return 0;
}

After we are finished with
the memory, we must

deallocate it, making it
available for other uses.

Failure to deallocate results
in a memory leak. We

deallocate with free, and
pass the pointer to the

memory chunk being freed.

Golden rule: Every malloc should have exactly one corresponding free.

9

Allocating and Deallocation structs

¢ structs contain one or more fields
¢ We have discussed struct memory allocation rules
¢ structs are often allocated in the heap
¢ Be careful when allocating structs containing pointers to other

dynamically allocated structs/arrays!
¢ Always work from “outside in” when allocating
¢ Always work from “inside out” when freeing

10

struct container {
int num;
unsigned char *values; // a char array of size num

};

int main(int argc, char *argv[]) {
 // allocate space for container first

struct container *contain = malloc(sizeof (struct container));
 if (contain == NULL) { //always check for malloc error
 return -1;
 }

 // get command line argument for size
 contain->num = atoi(argv[1]); // convert argument to int

 // now allocate space for char array with num values
contain->values = malloc(contain->num * sizeof(char));

 if (contain->values == NULL) { // malloc error
 return -1;
 }

 // “initialize” memory (in this case, set all values to 0)
memset(contain->values, 0, contain->num);

 contain->values[0] = 'h';
 printf("Values: %s\n", contain->values);

 // free internal structs first, outer struct last
free(contain->values);
free(contain);

}

Notation reminder:
Since contain is a

pointer, we use
-> to reference the

fields in the struct. If
contain was not a

pointer, you would use .
to reference the fields.

11

Checking for memory leaks with valgrind
-> valgrind --leak-check=yes struct-malloc 5

==454843== Command: struct-malloc 5

==454843== HEAP SUMMARY:

==454843== in use at exit: 0 bytes in 0 blocks

==454843== total heap usage: 3 allocs, 3 frees, 1,045 bytes allocated

==454843==

==454843== All heap blocks were freed -- no leaks are possible

==454843==

==454843== For lists of detected and suppressed errors, rerun with: -s

==454843== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

12

Checking for memory leaks with valgrind
(after removing “free” to create leaks)
-> valgrind --leak-check=yes struct-malloc 5

==454715== Command: struct-malloc 5

==454715== HEAP SUMMARY:

==454715== in use at exit: 21 bytes in 2 blocks

==454715== total heap usage: 3 allocs, 1 frees, 1,045 bytes allocated

==454715==

==454715== 21 (16 direct, 5 indirect) bytes in 1 blocks are definitely lost in loss
record 2 of 2

==454715== LEAK SUMMARY:

==454715== definitely lost: 16 bytes in 1 blocks

==454715== indirectly lost: 5 bytes in 1 blocks

==454715== possibly lost: 0 bytes in 0 blocks

==454715== still reachable: 0 bytes in 0 blocks

==454715== suppressed: 0 bytes in 0 blocks

==454715==

==454715== For lists of detected and suppressed errors, rerun with: -s

==454715== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

