
2/17/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 4	

Feb 17, 2014	

Administrative Details	

•  Lab 1 due today	

•  You can turnin multiple copies of files (it will

overwrite old submissions)	

•  Don’t forget thought questions!!	

•  Any questions/comments about Lab 1?	

•  Array of positions rather than a board	

•  “Random” board generation	

•  Problems with static variables?	

•  Handout: Lab 2	

•  Prepare design doc before lab!!! Think about the data

structures. 	

•  This lab is a bit more complex.	

 2	

Last Time	

•  Continued Java refresher	

•  Learned about interfaces, inheritance, and

specialization	

3	

Today’s Outline	

•  Learn about toString() and equals()	

•  Review access levels: public, protected, private 	

•  Implement PokerHand.java	

•  We have a lot to cover before lab…	

4	

Quick Note about “static” Variables	

•  Static variables are shared by all instances of class	

•  What would this print?	

!public class A {!

 !static protected int x = 0;!
!
 !public A() {!
 x++;!
 System.out.println(x);!
 !}!
!
 !public static void main(String args[]) {!
 A a1 = new A();!
 A a2 = new A();!
 !}!
!}!

•  Since static variables are shared by all instances of A,
x = 2 in a2! (Without static, x=1 in a1 and a2…)	

 5	

Quick Note about “static” Methods	

•  Static methods are shared by all instances of class	

•  (Usually) don’t call methods directly from main	

•  Create an object/instance of class first	

!public class A {!
 !public A() { … }!
! !public int doSomething() { … }!

 !public static void main(String args[]) {!
 A a1 = new A();!
 int n = a1.doSomething();!
! ! doSomething(); //WILL NOT COMPILE!
! !}!
!}!

6	

2/17/14

2

(Random) Notes about “abstract”	

•  An abstract method is a method that is declared without an
implementation in a class	

!abstract int getRank();!

•  All interface methods are implicitly abstract	

•  If a class contains an abstract method, the class must be
declared abstract (this is not necessary in an interface)	

•  Unlike interfaces, abstract classes contain partial
implementations (i.e., some implemented methods, but not all)	

•  Classes that partially implement an interface (i.e., not all
methods in interface are implemented) must be abstract	

•  More on this in a few weeks	

7	

Object Class	

•  All classes automatically extend Object	

•  In Java, everything is an object!	

•  Object class is the most general class in Java	

•  Several Object methods that we get “for free”:	

public String toString()!
public boolean equals(Object other) !

•  But we often have to override these methods to
make them useful (like swim() from last class)	

•  Note: These Object methods do not appear in
interfaces	

	

 8	

Object Methods	

•  Benefits of toString()	

•  Suppose we want to print all cards in a deck	

•  Annoying to type:	

 System.out.println(“card: “+card.getSuit()+” of “+card.getRank());!

•  We would rather type:	

 System.out.println(“card: “+card.toString()); !

•  Or even simpler:	

 System.out.println(“card: “+card); //toString() is implied	

	

9	

toString()	

•  What would toString() look like for a Card
object?	

•  Hint: We want the rank and suit.	

!
 public String toString() {!
! return getRankString()+” of ”+getSuitString();!

 }!
!

•  What would getRankString() look like?	

10	

getRankString()	

public String getRankString() {!
!String result;!
!switch (rank) {!
! !case TWO: result = “TWO”; break;!
! !//same as if (rank == TWO) result = “TWO”;!
! !case THREE: result = “THREE”; break;!
! !case FOUR: result = “FOUR”; break;!
! !…!
! !case ACE: result = “ACE”; break;!
! !default: result = “unknown”; break;!
!}!
!return result;!

}!

(getSuitString() would be very similar to this)	

 11	

Switch statements	

•  Switch statements can use byte, short, char, and int
primitive data types (although support for Strings
is supposedly present in Java 7)	

•  Switch statements can easily be rewritten using
nested if or if-else statements	

•  Syntax is:	

int var = 2; //var can also be byte, short, char!
String s = “”;!
switch (var) {!
!//for each possible value of var, there is a case statement!

 case 1: s=“one”; break; //same as: if (var==1) { s=“one”; }!
 case 2: s=“two”; break; //same as: if (var==2) { s=“two”; }!
 default: s=“invalid”; break; //same as: else { s=“invalid”; }!
}!

12	

2/17/14

3

Object Equality	

•  Suppose we have the following code:	

CardInterface c1 = new Card(ACE, SPADES);!
CardInterface c2 = new Card(ACE, SPADES);!
if (c1 == c2) { System.out.println(“SAME”); }!
else { System.out.println(“Not SAME”); }!

•  What is printed?	

•  How about:	

CardInterface c3 = c2;!
if (c2 == c3) { System.out.println(“SAME”); }!
else { System.out.println(“Not SAME”); }!

•  == tests whether 2 names refer to same object	

•  Each time we use “new,” a new object is created	

13	

Equality	

•  What do we really want?	

•  Check both rank and suit!	

•  How?	

!if (c1.getRank() == c2.getRank() && c1.getSuit() == c2.getSuit()){ !

! System.out.println(“SAME”);!
}!

•  This works, but is cumbersome…	

•  We really want to use equals()!

14	

equals()	

•  We want to say:	

if (c1.equals(c2)) { … }	

	

•  We need to override equals() in Card.java	

! !//equals() method header is defined by Object class!
! !public boolean equals(Object other) {!
! ! !
! return (getSuit() == other.getSuit()) &&!
! ! ! (getRank() == other.getRank());!
! !}	

•  What are we missing?	

•  Typecast - Force “Object other” to be treated as Card	

•  This may fail and generate an error, but that’s ok!	

15	

equals()	

•  We want to say:	

if (c1.equals(c2)) { … }	

	

•  We need to override equals() in Card.java!
! !//equals() method header is defined by Object class!
! !public boolean equals(Object other) {!

 Card otherCard = (Card)other;!
 return (getSuit() == otherCard.getSuit()) &&!
! ! ! (getRank() == otherCard.getRank());!
! !}!

•  What are we missing?	

•  Typecast - Force “Object other” to be treated as Card	

•  This may fail and generate an error, but that’s ok!	

16	

Memory Management in Java	

•  Where do “old” cards go?	

Card c = new Card(ACE, SPACES);!
… !
c = new Card (ACE, DIAMONDS);	

•  What happens to the Ace of Spades?	

•  Java has a garbage collector	

•  Runs periodically to “clean up” memory that had

been allocated but is no longer in use	

•  Automatically runs in background	

•  Not true for other languages!	

17	

Access Levels	

•  public, private, and protected variables/
methods	

•  What’s the difference?	

•  public – accessible by all classes, packages,

subclasses, etc.	

•  protected – accessible by all objects in same class,

same package, and all subclasses	

•  private – only accessible by objects in same class	

•  Generally want to be as “strict” as possible 	

18	

2/17/14

4

PokerHand.java	

•  Now that we have implemented CardInterface
and Card, how would we implement
PokerHand?	

•  PokerHand uses an array of Card objects	

•  Instance variables:	

•  static protected final int NUM_CARDS = 5;!
•  protected Card cards[];	

•  Methods:	

•  PokerHand(), toString(), shuffleDeck(),
isFlush(), …!

19	

Extra Slides	

•  (I did not cover the remaining slides in class,
but I am leaving them here for reference)	

20	

Array Manipulation: Shuffling	

•  How would we shuffle our deck of cards?	

•  We could write shuffleDeck()!
•  Assume we want to shuffle such that we only

swap cards with a card that appears later in the
deck	

•  swap is a little tricky	

•  Three step process, not two! 	

21	

More Array Manipulation: ���
Keeping Score	

•  How do we keep score in PokerHand?	

•  There are lots of conditions to check for…	

•  isPair, isTwoPairs, isThreeOfKind, isFlush,

isRoyalFlush, isStraight, etc	

•  How can we simplify testing for each of these
conditions and score keeping?	

•  Make a histogram! (See PokerHand.java)	

•  Now how would we implement isStraight()?	

•  Look for five sequential “1’s” in histogram	

 22	

0	

 2	

 0	

 0	

 0	

 0	

 0	

 0	

 1	

 1	

 1	

 0	

2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 J	

 Q	

 K	

 A	

 Rank	

Occurrences	

isStraight()	

public boolean isStraight(){!
!createHistogram();!
!int startRun = 0;!
!//move through histogram until you see # > 1!
!while (histogram[startRun] == 0) !
! startRun++;!
!//endRun=index of first non-zero entry in histogram!
!int endRun = startRun+1;!
!//loop until you see a 0!
!while (endRun < histogram.length && ! !!
! ! histogram[endRun] != 0)!
! endRun++;!

!
!return endRun - startRun == 5; !

}!
!

Order matters! Can’t check
histogram[endRun] before
checking for valid index in

array! (avoid possible “Array
Out Of Bounds” Exception)	

