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Administrative Details

¢ Final exam - self scheduled
* You get 2.5 hours to complete it

* Covers everything, with strong emphasis on Ch 14-16
(BSTs, HashTables, Maps, Graphs)

* Study guide on handouts page
* Makeup class today 1:10-2 in Wege
e Lab |1 is also today (optional) from 2-4

* You'll get midterms and Lab 9 (Darwin) back this
afternoon (I'll grade Lab 10 next week)

* Extra credit accepted through Tue, May 20 at 5pm
* | will be out of town this weekend

Last Time

* Briefly discussed DFS and BFS
e Darwin

* Nice job everyone

* Congrats to Riley!

Today’s Outline

e Finish discussing graph traversal algorithms
* Cycle detection
* Dijkstra’s algorithm (least cost shortest path)

Shortest Path and Cycle Detection

 Shortest path
* How do we find shortest path from src to all nodes?
 Could find all paths and then pick smallest...
« ...this is bad—there are many paths (O(n!))!
¢ Can we use BFS or DFS to find shortest path to all nodes?
* BFS (with labels on nodes that indicate “cost” from src)
e Cycle detection
e Is there a path starting at src that contains a cycle?
* Should we use BFS or DFS?

* DFS (stack tells us path from src to current node; see if path leads
to node already on stack)

Shortest Path
(No Weights on Edges)
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Shortest Path
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Cycle Detection Cycle Detection

Pool
Art
Jesup Jesup
TCL TCL
todo stack todo stack
Cycle Detection Shortest Path Revisited

* What if there are weights on our edges?
* Will BFS still work?

* No! BFS processes nodes according to number of
edges/hops from src to node

* Need something else...

Cycle!
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Dijkstra’s Algorithm
* Basic idea

e Algorithm

* While PQ is not empty
¢ Take shortest path SRC-> ... -> DEST from PQ
— If DEST has not been visited
» Fix distance to DEST in map
» Extend path to all neighbors of DEST
» Add new paths to PQ

¢ Explore paths from src in order of increasing total cost

* Keep map from node to shortest-distance-to-node
* Keep PQ of paths from SRC, ordered by total distance
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More Graph Algorithms!

* Topological sorting (DFS)
* Only valid for directed and acyclic graphs

* List vertices in such a way as to make the edges point in
one direction (i.e., back to beginning)

e Commonly used to solve scheduling problems, assembly
lines steps, etc.
* Minimum cost spanning tree (MST)
¢ Find edges with least total weight that connects all nodes

* Not quite DFS or BFS...uses a greedy algorithm to select
edges
¢ Important for phone, cable, water systems, etc.
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Topological Sort:
Unicycle Factory
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Moving on...Maps!

Maps are data structures that map keys to values
* Sometimes called dictionaries

* Where have we seen maps before?
* Associations!
* An Association is a single key-value pair. Maps may contain
lots of key-value pairs. (Kinda like a Vector of Associations,
but better!)

In Java, Maps are found in java.util package
What methods are needed in the Map interface?

Map Interface

* Methods for Map<K, V>

int size() - returns number of entries in map

boolean isEmpty() - true iff there are no entries
boolean containsKey(K key) - true iff key exists in map

boolean containsValue(V val) - true iff val exists at least
once in map

V get(K key) - get value associated with key

V put(K key, V val) - insert mapping from key to val,
returns value replaced (old value) or null

V remove(K key) - remove mapping from key to val
void clear() - remove all entries from map

Map Interface

e Other methods for Map<K,V>:

void putAll(Map<K,V> other) - puts all key-value pairs
from Map other in map

Set<K> keySet() - return set of keys in map

Set<Association<K,V>> entrySet() - return set of key-
value pairs from map

Structure<V> valueSet() - return set of values

boolean equals() - used to compare two maps

int hashCode() - returns hash code associated with map
(stay tuned...)

13



Sample Usage

* See Dictionary.java
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Simple Map Implementation

A simple implementation of the Map interface
is the MaplList class

Uses a SinglyLinkedList of Associations as
underlying data structure

How would we implement put(K key, V val)?
What is the running time of:

¢ containsKey(K key)?

e containsValue(V val)?

Bottom line: not O(I)!

Search/Locate Revisited

* How long does it take to search for objects in
Vectors and Lists?
* O(n) on average
* How about in BSTs?
* O(log n)
e Can this be improved?
¢ With hash tables, YES!
* Can locate objects in roughly O(1) time
* ...to be continued!
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