CSCl 136
Data Structures &
Advanced Programming

Jeannie Albrecht
Lecture 34

May12.2014
May 14,2014

5/14/14

Administrative Details

¢ Final exam - self scheduled
* You get 2.5 hours to complete it

* Covers everything, with strong emphasis on Ch 14-16
(BSTs, HashTables, Maps, Graphs)

* Study guide on handouts page
* Makeup class today 1:10-2 in Wege
e Lab |1 is also today (optional) from 2-4

* You'll get midterms and Lab 9 (Darwin) back this
afternoon (I'll grade Lab 10 next week)

* Extra credit accepted through Tue, May 20 at 5pm
* | will be out of town this weekend

Last Time

* Briefly discussed DFS and BFS
e Darwin

* Nice job everyone

* Congrats to Riley!

Today’s Outline

e Finish discussing graph traversal algorithms
* Cycle detection
* Dijkstra’s algorithm (least cost shortest path)

Shortest Path and Cycle Detection

 Shortest path
* How do we find shortest path from src to all nodes?
 Could find all paths and then pick smallest...
« ...this is bad—there are many paths (O(n!))!
¢ Can we use BFS or DFS to find shortest path to all nodes?
* BFS (with labels on nodes that indicate “cost” from src)
e Cycle detection
e Is there a path starting at src that contains a cycle?
* Should we use BFS or DFS?

* DFS (stack tells us path from src to current node; see if path leads
to node already on stack)

Shortest Path
(No Weights on Edges)




5/14/14

Shortest Path
(No Weights on Edges)

todo queue

Shortest Path
(No Weights on Edges)

Add | to neighbors of TCL...

| Jesup

 Bronf

. TBL

I

todo queue

Shortest Path
(No Weights on Edges)

| Jesup

| Bronf

!

todo queue

Shortest Path
(No Weights on Edges)

Add | to neighbors of Bronf...

2 West
| Jesup

!

todo queue

Shortest Path
(No Weights on Edges)

Bronfman

| 0 2 Art
2> West

!

todo queue

Add | to neighbors of Jesup...

Shortest Path
(No Weights on Edges)

1

todo queue




5/14/14

Shortest Path
(No Weights on Edges)

Bronfman

Add | to neighbors of Art...

!

todo queue

Shortest Path
(No Weights on Edges)

todo queue

Cycle Detection

Cycle Detection

Partially completed DFS...

todo stack

Cycle Detection

Jesup

TCL

todo stack

Cycle Detection

Art

Jesup

TCL

todo stack




5/14/14

Cycle Detection Cycle Detection

Pool
Art
Jesup Jesup
TCL TCL
todo stack todo stack
Cycle Detection Shortest Path Revisited

* What if there are weights on our edges?
* Will BFS still work?

* No! BFS processes nodes according to number of
edges/hops from src to node

* Need something else...

Cycle!

todo stack

Seattle
Portland

Atlanta Atlanta

700 700

Intuition




5/14/14

Atlanta

700

600

Atlanta

700

600

Atlanta

700

600

Atlanta

700

1500

600

1500

Atlanta

700

Seattle

100

600

3200 /200

800

Atlanta

700 2200




Dijkstra’s Algorithm
* Basic idea

e Algorithm

* While PQ is not empty
¢ Take shortest path SRC-> ... -> DEST from PQ
— If DEST has not been visited
» Fix distance to DEST in map
» Extend path to all neighbors of DEST
» Add new paths to PQ

¢ Explore paths from src in order of increasing total cost

* Keep map from node to shortest-distance-to-node
* Keep PQ of paths from SRC, ordered by total distance

5/14/14

Seattle
Portland

Atlanta

700

Dijkstra's Algorithm

700

Priority Queue

Atlanta

Seattle
Portland

Atlanta

700

Priority Queue

700

Current: 500 SF->Port (need to add Port’s neighbors to PQ)

SF->Den; SF->Dal
1000 1500

Atlanta

Seattle
Portland

Atlanta

700

Current: 500 SF->Port

—> ;  SF->Den;  SF->Dal

1000 1500




5/14/14

600

600

Atlanta Atlanta

700 700
Current: 600 SF->Port->Sea Current: 600 SF->Port->Sea
SF->Den; SF->Dal SF->Den; SF->Dal;
1000 1500 1000 1500

600 600

Atlanta

700
Current: 1000 SF->Den Current: 1000 SF->Den
SF->Dal; SF->Port->Sea->Bos SF->Dal; ;  SF->Port->Sea->Bos
1500 3400 1500 3400

600

600

Atlanta Atlanta

700 700

1500 1500
Current: 1500 SF->Dal Current: 1500 SF->Dal
SF->Den->Dal; SF->Den->Chi; SF->Port->Sea->Bos SF->Den->Dal;  SF->Den->Chi; 3 SF->Port->Sea->Bos|
1700 1900 3400 1700 1900 3400




600

Atlanta

700

1500
Current: 1700 SF->Den->Dal (we already have Dallas!)
SF->Den->Chi;  SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2700 3400

1900 2200

600

Atlanta

700

1500

Current: 1900 SF->Den->Chi
SF->Dal->Atl; 5 SF->Dal->LA; SF->Port->Sea->Bos
2200 2700 3400

5/14/14

600

Atlanta

700

1500
Current: 1900 SF->Den->Chi
SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2200 2700 3400

600

Atlanta

700 2200

1500

Current: 2200 SF->Dal->Atl
SF->Den->Chi->Atl;  SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400

600

Atlanta

2200

700

1500

Current: 2200 SF->Dal->Atl
SF->Dal->LA; SF->Port->Sea->Bos

SF->Den->Chi->Atl;
2700 3400

2500

600

Atlanta

700 2200

1500

Current: 2500 SF->Den->Chi->Atl

SF->Dal->Atl->NY;  SF->Port->Sea->Bos

SF->Dal->LA;
3000 3400

2700




600

Atlanta

2200

700

1500

2700
Current: 2700 SF->Dal->LA
SF->Port->Sea->Bos

SF->Dal->Atl->NY;
3400

3000

5/14/14

600

2700

Current:

SF->Port->Sea->Bos

3400

Seattle
Portland

3000 SF->Dal->Atl->NY

600

Atlanta

2200

700
2700 1500

Current: 3000 SF->Dal->Atl->NY
SF->Port->Sea->Bos

:> ; 3400

600

2200

700

1500

2700
Current: 3400 SF->Port->Sea->Bos

=

800

Atlanta

600

Cu

2700

3200 /200

Seattle

100

800

Atlanta

2200

700

1500

rrent: 3200 SF->Dal->Atl->NY->Bos

SF->Port->Sea->Bos
3400

3200 /200

Seattle

100

600

800

Atlanta

2200

700

2700

Current:

=




More Graph Algorithms!

* Topological sorting (DFS)
* Only valid for directed and acyclic graphs

* List vertices in such a way as to make the edges point in
one direction (i.e., back to beginning)

e Commonly used to solve scheduling problems, assembly
lines steps, etc.
* Minimum cost spanning tree (MST)
¢ Find edges with least total weight that connects all nodes

* Not quite DFS or BFS...uses a greedy algorithm to select
edges
¢ Important for phone, cable, water systems, etc.

5/14/14

Topological Sort:
Unicycle Factory

Attach Seat to Frame

/ Weld Frame

f\\«— Paint Frame
Attach Wheel to Frame
Attach Pedals to Wheel

Inflate Tire

Finished
Unicycle

Attach
Pedals

Finished
Unicycle

Attach
Pedals

Finished Unicycle

Finished
Unicycle

Attach
Pedals

Attach Wheel

Finished Unicycle

todo stack

todo stack
Finished
Unicycle
Attach
Pedals
Attach Pedals
Attach Wheel

Finished Unicycle

todo stack




Finished
Unicycle

Attach
Pedals

5/14/14

Attach Wheel

Finished Unicycle

todo stack

Finished
Unicycle

Attach
Pedals

Paint Frame

Attach Wheel

Finished Unicycle

Finished
Unicycle

Attach
Pedals

Weld Frame

Paint Frame

Attach Wheel

Finished Unicycle

todo stack

todo stack
Finished
Unicycle
Attach
Pedals
Paint Frame
Attach Wheel

Finished Unicycle

todo stack

Finished
Unicycle

Attach
Pedals

Attach Wheel

Finished Unicycle

todo stack

Finished
Unicycle

Attach
Pedals

Finished Unicycle

todo stack

11



5/14/14

Finished
Unicycle

Attach
Pedals

Inflate Tire

Finished Unicycle

todo stack

Finished
Unicycle

Attach
Pedals

Finished Unicycle

todo stack

Finished
Unicycle

Attach
Pedals

Attach Seat

Finished Unicycle

todo stack

Finished
Unicycle

Attach
Pedals

Finished Unicycle

todo stack

Finished
Unicycle

Attach
Pedals

todo stack

Finished
Unicycle

Attach
Pedals

NoUuiAcwN —

Attach Pedals
Weld Frame
Paint Frame
Attach Wheel
Inflate Tire
Attach Seat
Finished Unicycle

12



5/14/14

Moving on...Maps!

Maps are data structures that map keys to values
* Sometimes called dictionaries

* Where have we seen maps before?
* Associations!
* An Association is a single key-value pair. Maps may contain
lots of key-value pairs. (Kinda like a Vector of Associations,
but better!)

In Java, Maps are found in java.util package
What methods are needed in the Map interface?

Map Interface

* Methods for Map<K, V>

int size() - returns number of entries in map

boolean isEmpty() - true iff there are no entries
boolean containsKey(K key) - true iff key exists in map

boolean containsValue(V val) - true iff val exists at least
once in map

V get(K key) - get value associated with key

V put(K key, V val) - insert mapping from key to val,
returns value replaced (old value) or null

V remove(K key) - remove mapping from key to val
void clear() - remove all entries from map

Map Interface

e Other methods for Map<K,V>:

void putAll(Map<K,V> other) - puts all key-value pairs
from Map other in map

Set<K> keySet() - return set of keys in map

Set<Association<K,V>> entrySet() - return set of key-
value pairs from map

Structure<V> valueSet() - return set of values

boolean equals() - used to compare two maps

int hashCode() - returns hash code associated with map
(stay tuned...)

13



Sample Usage

* See Dictionary.java

5/14/14

Simple Map Implementation

A simple implementation of the Map interface
is the MaplList class

Uses a SinglyLinkedList of Associations as
underlying data structure

How would we implement put(K key, V val)?
What is the running time of:

¢ containsKey(K key)?

e containsValue(V val)?

Bottom line: not O(I)!

Search/Locate Revisited

* How long does it take to search for objects in
Vectors and Lists?
* O(n) on average
* How about in BSTs?
* O(log n)
e Can this be improved?
¢ With hash tables, YES!
* Can locate objects in roughly O(1) time
* ...to be continued!

14



