CSCI 136
Data Structures &
Advanced Programming

Jeannie Albrecht
Lecture 28
April 28, 2014

4/29/14

Administrative Details

Pizza info session at 9pm in common room
Darwin lab

* Part | due tonight; Part 2 due next Monday
Midterm 2

* Wednesday during lab in Wege (Ipm-3pm)

e Covers Ch 7,8, 10-13, Closed book

* Review: Tuesday 9:30pm-10:30pm, TCL 202

* No class on Wednesday (but I'll be in my office)
Office hours today: 2-3:30

Last Time

* Started talking about BSTs
¢ Learned how to locate elements to a BST

Today’s Outline

* Wrap up binary search trees
* Maybe start talking about Graphs (Ch 16)

* Learn a bit more about graphs during next lab

Implementing BSTs

* Important BST methods (from last time):
* Constructor(s)
e protected BT locate(BT root, Object value)

* Today we'll cover:
¢ public boolean contains(Object value)
* public Object get(Object value)
* public void add(Object value)
* protected BT predecessor (BT root)

Recap: locate

protected BT locate(BT top, Object value) {
// pre: top and value are non-null
// post: returns “highest” node with the desired value,

// or node to which value should be added
Object topValue = top.value();
BT child;

// found at top: done
if (topValue.equals(value)) return top;
// look left if less-than, right if greater-than
if (ordering.compare(topValue,value) < 0) {
child = top.right();
} else {
child = top.left();
}
// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) { return top; }
else { return locate(child, value); }




Adding to a BST

¢ How do we add elements to a BST?

4/29/14

add

public void add(Object value) {
BT newNode = new BT(value);
BT node = locate(root,value);
if (root.isEmpty()) { root = newNode; }
else {
Object nodeValue = node.value();
// node is successor or predecessor of newNode
if (ordering.compare(nodeValue,value) < 0) {
node.setRight (newNode) ;
} else {
if (!node.left().isEmpty()) {
// if value is in tree, we insert before it
predecessor (node) .setRight (newNode) ;
} else {
node.setLeft (newNode) ;
}
}
}
count++;

}

Removal

* Removing the root is the hardest
* Let’s figure that out first

* If we figure out how to remove the root, we can
remove any element in BST in same way (why?)

* We need to implement:
¢ public Object remove(Object item)
* protected BT removeTop (BT top)




