
4/11/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 20	

April 9, 2014	

Administrative Details	

•  Lab 7 is today	

•  Any questions?	

•  Lab 6 was due yesterday	

•  If you are using late days, please do not work on

Lab 6 during lab today! You need to get started
on Lab 7…	

Last Time	

•  Discussed iterators (Ch 8)	

•  Used for efficient data traversal	

•  Reviewed the Iterator interface 	

•  next() and hasNext() (and remove())	

•  Reviewed the AbstractIterator class	

•  Leaves get(), next(), hasNext(), and reset() undefined (as

indicated by “abstract” label in javadocs)	

More Iterator Examples	

•  In addition to our “typical” iterators, we can
also make specialized iterators	

•  Another SLL Example (SpecialIterator.java)	

•  TestIterator.java	

Today’s Outline	

•  Learn about ordered structures (Ch 11)	

•  An interesting twist on Lists and Vectors	

Ordered Structures	

•  Until now, we have not required a specific
ordering to the data stored in our structures	

•  If we wanted the data ordered/sorted, we had to

do it ourselves	

•  We often want to keep data ordered	

•  Allows for faster searching	

•  Easier data mining - easy to find best/worst/
average/median values	

4/11/14

2

Ordering Structures	

•  The key to establishing order is being able to compare
objects and rank them	

•  We already know how to compare two objects…how?	

•  Comparators and compare(Object a, Object b)	

•  Comparable interface and compareTo(Object that)!

An Aside: Natural Comparators	

•  NaturalComparators bridge the gap between
Comparators and Comparables	

!class NaturalComparator implements Comparator {!
! !public int compare(Object a, Object b) {!
! ! !return ((Comparable)a).compareTo(b);!
! !}!

!}	

	

Another Aside: ���
Comparable Associations	

•  What if we extend Associations to be Comparable?	

•  You might have used this in lab a few weeks ago…	

	

 	

public class ComparableAssociation extends Association !!
! ! implements Comparable {!
! ! public ComparableAssociation(Comparable key, Object val){!
! ! !super(key, val);!
! ! }!
! ! pubic int compareTo(Object other) {!
! ! !ComparableAssociation otherAssoc = !
! ! ! (ComparableAssociation)other;!
! ! !Comparable thisKey = (Comparable) getKey();!
! ! !Comparable otherKey = (Comparable) other.getKey();!
! ! !return thisKey.compareTo(otherKey);!
! ! }!
! !}

Back to Ordered Vectors	

•  We want to create a Vector that is always sorted	

•  When new elements are added, they are inserted into
correct position	

•  We still need the standard set of Vector methods	

•  add, remove, contains, size, iterator, …	

•  Two choices	

•  Extend Vector (like sorting lab)	

•  New class (like StackVector)	

•  Gives a more narrow interface	

•  Not all vector methods are defined (e.g., random access add/set)	

•  Let’s implement a new class (OrderedVector)	

•  Start with Comparables	

•  Generalize to use Comparators instead of Comparables	

Summary	

public class OrderedVector<E extends Comparable<E>>!
 implements OrderedStructure<E> {!
!protected Vector<E> data;!

!
!public OrderedVector() {!
! !data = new Vector<E>();!
!}!

!
!public void add(E value) {!
! !int pos = locate(value);!
! !data.add(pos, value);!
!}!

!
!protected int locate(E value) {!
! !//use modified binary search to find position of value!
! !//return position!
!}!

Summary	

!public boolean contains(E value) {!
! !int pos = locate(value);!
! !return pos < size() && data.get(pos).equals(value);!
!}!

!
!public Object remove (E value) {!
! !if (contains(value)) {!
! ! !int pos = locate(value);!
! ! !return data.remove(pos);!
! !}!
! !else return null;!
!}!

!

!Performance:	

	

 	

add - O(n)	

	

 	

contains - O(log n)	

	

 	

remove - O(n)!

!

How would we generalize
to Comparators?	

4/11/14

3

Generalizing OV…	

public class OrderedVector<E extends Comparable<E>>!
 implements OrderedStructure<E> {!
!protected Vector<E> data;!
!protected Comparator<E> comp;!

!
!public OV() {!
! !data = new Vector<E>();!
! !this.comp = new NaturalComparator<E>();!
!}!

!
!public OV(Comparator<E> comp) {!
! !data = new Vector<E>();!
! !this.comp = comp;!
!}!

!
!protected int locate(E value) {!
! !//use modified binary search to find position of value!
! !//return position!
! !//use comp.compare instead of compareTo!
!}!

!
!//rest stays same…!

Ordered Lists	

•  Similar to OrderedVector	

•  Uses SinglyLinkedList instead of Vector as

underlying data structure	

•  add, contains, remove runtime?	

•  All O(n)…why?	

•  OrderedLists use Comparators rather than
Comparables (as in OrderedVector) in
structure5	

Example	

•  Students compared to
each other by GPA	

•  Suppose next
semester I get a 3.3
and Brent gets a 3.7	

	

OrderedVector	

Duane	

4.0	

Jeannie	

3.5	

Brent	

3.3	

Students	

What’s the problem?	

•  We have to recompute GPAs each semester 	

•  What happens if the ordering changes?	

•  We may need to resort vector	

•  So…we need a resort method	

•  But since this isn’t part of the interface, it may be forgotten	

•  Rule: Avoid using mutable keys in OrderedStructures	

•  So for our example, we should use names instead of

GPAs to rank Students	

