
4/7/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 18	

March 21, 2014	

Administrative Details	

•  Lab 6 due Tuesday after break	

•  I think some TAs will be around on Sunday and

Monday evening (look for an email with hours)	

Last Time	

•  Finished up stacks	

•  LIFO linear data structure	

	

•  Learned about queues	

•  FIFO linear data structure	

Today’s Outline	

•  Finish up queues	

•  Maybe start talking about iterators	

Routing With Queues	

(Slides initially created by Stephen Freund)	

	

The Network	

moo.cs.williams.edu	

(137.165.8.3)	

www.google.com	

 (216.239.37.99)	

137.165.8.3 216.239.37.99 "Search for ..."	

Message:	

	

Network	

???	

4/7/14

2

Routers	

R1	

R2	

R3	

R4	

moo.cs.williams.edu	

(137.165.8.3)	

www.google.com	

 (216.239.37.99)	

137.165.8.3 216.239.37.99 "Search for ..."	

Message:	

Routers	

Routing Algorithm	

1.  Receive message	

2.  Look up Destination Address	

a)  Deliver message to Dest	

b)  Forward to next Router	

moo.cs.williams.edu	

(137.165.8.3)	

www.google.com	

 (216.239.37.99)	

R1	

R2	

R3	

R4	

Router Internals	

R1	

R4	

Lookup	

Dest Addr	

137.165.8.3 	

 	

 R1
216.239.37.99 R4 	

 ... 	

 	

 ...	

	

R1	

R4	

R2	

Buffering Messages	

•  There may be routing delays	

•  Router receives messages faster than they can

process and send -> causes congestion	

•  Some links are slower than others 	

•  Common speeds: 10Mbs, 100Mbs, 1Gbs, 10Gbs	

•  Wireless, satellite, optical fiber, cable, telephone line, ...	

•  Hardware problems	

•  Want to be able to gracefully handle short-
term congestion problems	

Router Internals	

R1	

R4	

Lookup	

Dest Addr	

R1	

R4	

R2	

137.165.8.3 	

 	

 R1
216.239.37.99 R4 	

 ... 	

 	

 ...	

	

Firewalls	

R1	

R4	

Lookup	

Dest Addr	

R1	

R4	

good	

	

bad	

 discard	

Check Source	

R2	

4/7/14

3

Priority Scheduling	

R1	

R4	

Lookup	

Dest Addr	

high	

	

med	

	

low	

Priority of	

Source/Dest	

70%	

	

20%	

	

10%	

	

Scheduler	

Bandwidth Shaper	

R1	

R4	

Lookup	

Dest Addr	

music	

	

	

other	

Classify	

Message	

	

Scheduler	

Limit(100)	

More On Modular Routers	

	

"The Click Modular Router", Eddie Koller and

Robert Morris, Jr.	

	

Choosing The Best Route	

moo	

(137.165.8.3)	

google	

 (216.239.37.99)	

R1	

R2	

R3	

R4	

?	

Choosing Routes	

•  Routers exchange information periodically	

•  Attempt to route messages via "best" path to

destination	

•  Not easy to determine:	

•  Network congestion varies (evening vs. morning)	

•  Hardware added/removed or failures	

•  Dijkstra's algorithm (later)	

Moving on…	

4/7/14

4

Summary	

•  Linear Structures: stacks and queues	

•  One method for adding items	

•  One method for removing items	

•  Restricted interface	

•  Stack	

•  Queue	

A	

B	

C	

A	

B	

C	

add	

(push)	

remove	

(pop)	

add	

(enqueue)	

remove	

(dequeue)	

Summary	

Structure	

List	

 Linear	

Vector	

 DLL	

 SLL	

 Stack	

 Queue	

Array	

 Vector	

 List	

 Array	

 Vector	

 List	

Common Structure Operations	

•  size()!
•  isEmpty()!
•  add()!
•  remove()!
•  clear()!
•  contains()!

•  What’s missing? (Recall our unsolved SLL
“problem”…)!

Visiting Data from Structure	

•  Write a method (numOccurs) that counts the
number of times a particular Object appears
in a structure	

•  Does this work on all structures?	

Problems	

•  get(i) not defined on Linear structures	

•  get(i) may by slow on some structures	

•  O(n) on SLL	

•  So numOccurs = O(n2)	

•  How do we process data in structures in a
general, efficient way?	

•  Must be data structure-specific for efficiency	

•  Must always use some interface to make general	

Iterators	

•  Iterators provide us with a way to cycle
through elements of a structure in an efficient
way	

•  An Iterator is an object that:	

•  Provides generic methods to traverse elements	

•  Abstracts away details of how to access structure	

•  Has different implementations for different

structures	

