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CSCI 136���
Data Structures &���

Advanced Programming	



Jeannie Albrecht	


Lecture 18	



March 21, 2014	



Administrative Details	



•  Lab 6 due Tuesday after break	


•  I think some TAs will be around on Sunday and 

Monday evening (look for an email with hours)	



Last Time	



•  Finished up stacks	


•  LIFO linear data structure	


	



•  Learned about queues	


•  FIFO linear data structure	



Today’s Outline	



•  Finish up queues	


•  Maybe start talking about iterators	



Routing With Queues	



(Slides initially created by Stephen Freund)	


	



The Network	
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Routers	



R1	
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R3	



R4	
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Message:	



Routers	



Routing Algorithm	


1.  Receive message	


2.  Look up Destination Address	



a)  Deliver message to Dest	


b)  Forward to next Router	
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Router Internals	



R1	



R4	



Lookup	


Dest Addr	



137.165.8.3 	

     	

  R1  
216.239.37.99                   R4 	


 ... 	
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Buffering Messages	



•  There may be routing delays	


•  Router receives messages faster than they can 

process and send -> causes congestion	



•  Some links are slower than others 	


•  Common speeds: 10Mbs, 100Mbs, 1Gbs, 10Gbs	



•  Wireless, satellite, optical fiber, cable, telephone line, ...	



•  Hardware problems	



•  Want to be able to gracefully handle short-
term congestion problems	



Router Internals	
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Firewalls	
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Priority Scheduling	
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Scheduler	



Bandwidth Shaper	
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Lookup	
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More On Modular Routers	



	


"The Click Modular Router", Eddie Koller and 

Robert Morris, Jr.	


	



Choosing The Best Route	



moo	


(137.165.8.3)	



google	


 (216.239.37.99)	



R1	



R2	



R3	



R4	

?	



Choosing Routes	



•  Routers exchange information periodically	


•  Attempt to route messages via "best" path to 

destination	



•  Not easy to determine:	


•  Network congestion varies (evening vs. morning)	



•  Hardware added/removed or failures	



•  Dijkstra's algorithm (later)	



Moving on…	
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Summary	



•  Linear Structures: stacks and queues	


•  One method for adding items	



•  One method for removing items	


•  Restricted interface	



•  Stack	



•  Queue	


A	


B	


C	



A	

B	

C	



add	


(push)	



remove	


(pop)	



add	


(enqueue)	



remove	


(dequeue)	



Summary	



Structure	



List	

 Linear	



Vector	

 DLL	

 SLL	

 Stack	

 Queue	



Array	

 Vector	

 List	

 Array	

 Vector	

 List	



Common Structure Operations	



•  size()!
•  isEmpty()!
•  add()!
•  remove()!
•  clear()!
•  contains()!

•  What’s missing? (Recall our unsolved SLL 
“problem”…)!

Visiting Data from Structure	



•  Write a method (numOccurs) that counts the 
number of times a particular Object appears 
in a structure	



•  Does this work on all structures?	



Problems	



•  get(i) not defined on Linear structures	


•  get(i) may by slow on some structures	


•  O(n) on SLL	


•  So numOccurs = O(n2)	



•  How do we process data in structures in a 
general, efficient way?	


•  Must be data structure-specific for efficiency	


•  Must always use some interface to make general	



Iterators	



•  Iterators provide us with a way to cycle 
through elements of a structure in an efficient 
way	



•  An Iterator is an object that:	


•  Provides generic methods to traverse elements	


•  Abstracts away details of how to access structure	


•  Has different implementations for different 

structures	




