
3/5/14

1

CSCI 136���
Data Structures &���

Advanced Programming	

Jeannie Albrecht	

Lecture 11	

Mar 5, 2014	

Administrative Details	

•  Lab 4 is today	

•  Extend Vector to sort with a Comparator 	

•  More details on next slide…	

•  Midterm during lab next Wednesday (3/12)	

•  Can everyone start at 1:00? Should be finished by 3:00.	

•  Lab 5 will still be posted next week but is optional 	

•  Extra credit opportunity	

•  Covers book, lab, lecture material through next Monday	

•  I will post a sample exam and a study guide	

2	

Lab 4 Details	

•  Lab 4	

•  Extend Vector to sort with a Comparator

(described in textbook)	

•  Create Student class and read in data into Vector

of Students	

•  Create Comparators to sort students in different

ways (name, phone, mailbox, etc) 	

•  You might want to use a ComparableAssociation

at some point	

•  Same as normal Association, but has compareTo 	

•  I was unable to update the phone book data 	

3	

Last Time	

•  Discussed searching	

•  Linear searching	

•  Binary searching	

4	

Today’s Outline	

•  Wrap up searching	

•  Briefly learn about Comparables and

Comparators	

•  Discuss sorting algorithms	

•  High-level Goals	

•  Understand sorting algorithms	

•  Understand the tradeoffs between algorithms	

•  Learn how to prove properties of recursive

programs using induction	

5	

Recap: Binary Search	

•  Find a name in the phonebook	

•  Guess a number between 1 and 100	

•  These are examples of binary search	

•  Why does it work?	

•  Rule out as much of search space as possible with each
guess	

•  What assumption (about the data) does it rely on?	

•  Is it recursive? Let’s look at the code…	

•  http://www.cs.williams.edu/~jeannie/cs136/lectures/lecture9/SortSearchDemo/	

6	

3/5/14

2

Binary Search	

•  Complexity:	

•  Each recursive call takes at most 2 array comparisons	

•  So how many calls when n=2k? (list size is a power of 2…)	

	

 Size of list during recursion: [2k, 2k-1, …, 20, 0] 	

	

  k+1 calls with 2 comparisons each 	

	

  2(k+1) = 2(log n +1) = O(log n) for list of size n	

•  Show: recBinarySearch takes 2(log n + 1)
comparisons. (Assume list size is power of 2…)	

•  Overall O(log n) comparisons	

•  Worst case: 2(log n + 1)	

•  Can we reduce the number of comparisons?	

•  Food for thought: BinSearchAlt.java	

	

 	

7	

Is this version better?	

•  Worst case (element not found):	

•  log n + 1 comparisons vs. 2(log n +1) comparisons	

•  Twice as good!	

•  Average case	

•  Only slight improvement in most cases	

•  Best case	

•  We now continue to recurse even if 	

	

a[mid] == value right away	

•  This is actually worse than before…	

8	

Linear vs. Binary Search	

•  Which is better?	

•  Linear is O(n) in average case	

•  Binary is O(log n)	

•  So binary is better?? Yes, but…	

•  Binary search requires ordering (i.e., pre-sorted

data). We need the “<“ and “>” operators	

•  Some objects already have these operators (ints, Strings)	

•  We want a uniform way of saying objects can be

compared…	

•  Make an interface! (Comparable interface)	

Comparable Interface	

•  We want to define an interface for handling comparisons
between objects	

•  We need a general method for “<“ and “>” in recBinarySearch	

•  As long as our objects implement Comparable, we know we
can safely call “compareTo” (required for binary search)	

•  See BinSearchComparable.java	

!
public interface Comparable {!
 //post: return < 0 if smaller than other!
 return 0 is equal to other!
 return > 0 if greater than other!
 int compareTo(Object other);!

} 	

compareTo in Card.java	

public class Card implements Comparable {!
!!
!public int compareTo(Object obj) {!
! !Card other = (Card) obj;!
! !if (suit != other.getSuit()) {!
! ! !return suit - other.getSuit();!
! !}!
! !return rank - other.getRank();!
!}!

!
}!

•  Note: The magnitude of the values returned is not important.
We only care if it’s +, -, or 0!	

•  compareTo defines a natural ordering of Objects	

•  Can also use parameterized data types to avoid casting	

•  In lab this week, you’ll explore another way to compare

objects using Comparators 	

Comparators	

•  Limitations with Comparable interface	

•  Only permits one order between objects	

•  What if it isn’t the desired ordering?	

•  What if it isn’t implemented?	

•  Solution: Comparators 	

12	

3/5/14

3

Comparators (Ch 6.8)	

•  A comparator is an object that contains a method that
is capable of comparing two objects	

•  Sorting methods can apply a comparator to two objects
when a comparison is to be performed	

•  Different comparators can be applied to the same data
to sort in different orders or on different keys	

!public interface Comparator <E> { !
! !// pre: a and b are valid objects, likely of similar type !
! !// post: returns a value <, =, or > than 0 !
! ! if a is less than, equal to, or greater than b !
! !public int compare(E a, E b); !
!} !

13	

Example	

class Patient {!

protected int age;!
protected String name;!
public Patient (String s, int a) {name = s; age = a;}!
public String getName() { return name; }!
public int getAge() {return age;}!

}!
!
class NameComparator implements Comparator <Patient>{!
 public int compare(Patient a, Patient b) {!
 return a.getName().compareTo(b.getName());!
 }!
}!
!
!
public void recSelSort(T a[], int last, Comparator<T> c) {!
!…!
!if (c.compare(a[i], a[max]) > 0) {…}!

}!
!
recSelSort(patients, n, new NameComparator());!

Note that Patient does
not implement	

Comparable or

Comparator!	

14	

Sorting	

Different Types of Sorting	

•  Bubble sort	

•  Insertion sort	

•  Selection sort	

•  Merge sort	

•  Quick sort	

Bubble Sort	

•  Simple sorting algorithm that works by repeatedly
stepping through the list to be sorted, comparing
two items at a time and swapping them if they are in
the wrong order	

•  Repeated until no swaps are needed	

•  Gets its name from the way smaller elements

"bubble" to the front of the list	

•  Time complexity?	

•  O(n2)	

•  Space complexity?	

•  O(n) total (no additional space is required)	

Bubble Sort	

•  First Pass:	

•  (5 1 3 2 9) → (1 5 3 2 9) 	

•  (1 5 3 2 9) → (1 3 5 2 9)	

•  (1 3 5 2 9) → (1 3 2 5 9)	

•  (1 3 2 5 9) → (1 3 2 5 9) 	

•  Second Pass:	

•  (1 3 2 5 9) → (1 3 2 5 9)	

•  (1 3 2 5 9) → (1 2 3 5 9)	

•  (1 2 3 5 9) → (1 2 3 5 9)	

•  (1 2 3 5 9) → (1 2 3 5 9)	

•  Third Pass:	

•  (1 2 3 5 9) -> (1 2 3 5 9)	

•  (1 2 3 5 9) -> (1 2 3 5 9)	

•  (1 2 3 5 9) -> (1 2 3 5 9)	

•  (1 2 3 5 9) -> (1 2 3 5 9)	

http://www.youtube.com/watch?v=lyZQPjUT5B4	

	

3/5/14

4

Insertion Sort	

•  Simple sorting algorithm that works by building a

sorted list one entry at a time	

•  Less efficient on large lists than more advanced

sorting algorithms	

•  Advantages:	

•  Simple to implement and efficient on small lists	

•  Efficient on data sets which are already substantially sorted 	

•  Time complexity	

•  O(n2)	

•  Space complexity	

•  O(n)	

19	

Insertion Sort	

•  5 	

7 	

0 	

3 	

4 	

2 	

6 	

1 	

	

•  5 	

7 	

0 	

3 	

4 	

2 	

6 	

1	

•  0 	

5 	

7 	

3 	

4 	

2 	

6 	

1	

•  0 	

3 	

5 	

7 	

4 	

2 	

6 	

1 	

	

•  0 	

3 	

4 	

5 	

7 	

2 	

6 	

1 	

	

•  0 	

2 	

3 	

4 	

5 	

7 	

6 	

1 	

	

•  0 	

2 	

3 	

4 	

5 	

6 	

7 	

1 	

	

•  0 	

1 	

2 	

3 	

4 	

5 	

6 	

7 	

	

20	

