
CS134:  

Wrap-Up

Announcements & Logistics
• Lab 9 Grading: Coming soon!

• Final exam:

• Fri Dec 16 @ 9:30am in TPL 203

• Reduced distractions/extra time TPL 205

• 2 hour closed book exam
• Cumulative w/ more weight on topics post-midterm topics
• Practice problems are posted; review lecture slides, jupyter notebooks,

HWs, and labs
• Format will be very similar to midterm

• Review session: Wed Dec 14 @ 7:30pm-9:30pm in TPL 203

• Very informal, come ask us questions

Student
Help Hours
Next Week

(Check webpage
for updates!)

Last Time
• Reviewed OOP concepts using Python and Java as examples

• A class vs an instance of the class

• Attributes (instance variables) and __slots__

• Accessor and mutator methods: getters, setters

• Scope: public, private and protected (or _ and __ in Python)

• Special methods and operator/function overloading

Today's Plan
• Summarize main topics covered in CS 134 this semester

• Complete course evals

• We’ll end lecture early to leave time for you to fill out evals

Optional Fun Stuff:
Python & Webpages

What is a
webpage?

“Ten movies streaming across that, that Internet, and what
happens to your own personal Internet? I just the other day
got... an Internet was sent by my staff at 10 o'clock in the
morning on Friday. I got it yesterday [Tuesday]. Why? Because it
got tangled up with all these things going on the Internet
commercially. [...]

They want to deliver vast amounts of information over the
Internet. And again, the Internet is not something that you just
dump something on. It's not a big truck.  
It's a series of tubes.”

US Senator Ted Stevens (R-Alaska) in 2006, Head of the committee regulating Net Neutrality

NO!

https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90
https://youtu.be/lTonHRerMC4?t=90

A webpage is just a publicly accessible file on a
computer somewhere.

Learn more: https://youtu.be/AEaKrq3SpW8

https://youtu.be/AEaKrq3SpW8

HTML
• HyperText Markup Language
• Specifies how to format text for your Internet Browser

• Different tags/symbols specify how computer should display text

• Markup language, not a programming language!

Try This...
• Right-click a webpage

• "View Page Source"

http://cs.williams.edu/~cs134/basic.html

Try This...

• Copy/Paste/Save with .html file extension in a text editor (like VS Code)

<html>
 <head>
 <title>CS134 Simple Page</title>
 </head>

 <body>
 Hello CS 134! This is a simple web page.

 Looking for Jeannie? Click here.

 Looking for Iris? Click here.

 Looking for Pixel? Click
 here.

 Here are some images.

 </body>

</html>

Try This...

• Make a small change. Save and view file in a web browser.

<html>
 <head>
 <title>CS134 Simple Page</title>
 </head>

 <body>
 Hello CS 134! This is a simple web page.

 Looking for Jeannie? Click here.

 Looking for Iris? Click here.

 Looking for Pixel? Click
 here.

 Here are some images.

 </body>

</html>

Try This...

HTML
• <h1>Text goes here</h1> ➡ Makes a level1 heading

• Guess: there's also an <h2></h2>, and <h3></h3>, and ...

• Text goes here ➡ Makes the text bold (also)

• <i>Text goes here</i> ➡ Makes the text italic (also)

• Link Text here ➡ Makes a hyperlink

• Text goes here ➡ Changes the font

• Text goes here ➡ Changes font size

• Text goes here ➡ Changes font color

• <p>Text goes here</p> ➡ Paragraph definition (~2 newlines)

•
 ➡ Line break (~1 newline)

http://url-here.edu

HTML Header
• <html> ➡ Defines what markup language is being used

• <head> Text & Tags in here are part of the header </head>

• <title> This title appears in the web browser </title>

• <body> Text & Tags in here are part of the body text </body>

• </html> ➡ Ends HTML file

<html>
 <head>
 <title>CS134 Simple Page</title>
 </head>

 <body>
 Hello CS 134! This is a simple web page.

 Looking for Jeannie? Click here.

 Looking for Iris? Click here.

Pulling Source Code from Web Pages
terminal% pip install requests

>>> import requests

>>> r = requests.get('http://www.cs.williams.edu/~cs134/basic.html')

>>> r.text

'<html>\n <head>\n <title>CS134 Simple Page</title>\n </
head>\n\n <body>\n Hello CS 134! This is a simple web page.
\n\n

\n Looking for Jeannie? Click <a href="http://
www.cs.williams.edu/~jeannie">here.\n\n

\n
Looking for Iris? Click <a href="http://www.cs.williams.edu/
~iris">here.\n\n

\n Looking for Pixel? Click <a
href="https://www.cs.williams.edu/~iris/website/img/
HAILab.jpg">here.\n\n

\n Here are some images.
\n\n

\n <img src="http://sysnet.cs.williams.edu/
Williams-Logo.jpg" alt="purple cow">\n\n

\n <img
src="http://sysnet.cs.williams.edu/williams.gif" alt="seal">\n\n

\n <img src="http://sysnet.cs.williams.edu/reading-
cow.jpg" alt="reading cow">\n\n </body>\n\n</html>\n \n\n
\n'

http://docs.python-requests.org/en/master/user/quickstart/

http://docs.python-requests.org/en/master/user/quickstart/

Processing Source Code from Web Pages
• If you want to parse the HTML text from a string, the

Beautiful Soup module is recommended:
• https://beautiful-soup-4.readthedocs.io/en/latest/

• terminal% pip install beautifulsoup4

Processing Source Code from Web Pages
>>> from bs4 import BeautifulSoup

>>> soup = BeautifulSoup(r.text, 'html.parser')

>>> print(soup.prettify())

<html>

 <head>

 <title>

 CS134 Simple Page

 </title>

 </head>

 <body>

 Hello CS 134! This is a simple web page.

 Looking for Jeannie? Click

 here

 .

 Looking for Iris? Click

 here

Processing Source Code from Web Pages
>>> soup.title

<title>CS134 Simple Page</title>

>>> soup.title.name

'title'

>>> soup.title.string

'CS134 Simple Page'

>>> soup.title.parent.name

'head'

>>> soup.img

<img alt="purple cow" src="http://sysnet.cs.williams.edu/
Williams-Logo.jpg"/>

Processing Source Code from Web Pages
>>> soup.a

here</
a>

>>> soup.find_all('a')

[here,

 here,

 <a href="https://www.cs.williams.edu/~iris/website/img/
HAILab.jpg">here]

Extracting All URLs
for link in soup.find_all('a'):

 print(link.get("href"))

http://www.cs.williams.edu/~jeannie

http://www.cs.williams.edu/~iris

https://www.cs.williams.edu/~iris/website/img/HAILab.jpg

See beautifulsoup4 documentation

Lots more beautifulsoup4 can do!
Learning the importance of documentation!

https://beautiful-soup-4.readthedocs.io/en/latest/

https://beautiful-soup-4.readthedocs.io/en/latest/

What are we doing?!
• So now we can scrape HTML data from webpages...
• ...and parse the data so we can pull out meaningful text...

• Maybe you're:
• building a web crawler, documenting all the webpages on the Internet so

their text can be searchable...
• a sports recruiter and you need to pull wins/losses data from local amateur

leagues...
• a designer building software to make stock market transactions based on

the weather...
• a PR firm tracking in vivo mentions of particular products or brands
• a humanitarian gathering evidence on organized crime groups
• an AI researcher trying to generate new paint color names

Why might we want to pull
source code from the web?

What are we doing?!
• Python has lots more accessible modules that do other fun

things
• Play music
• Process images
• Generate text
• Statistical operations
• Among others!

Take-away
• Python is a powerful tool that:

• Processes, manipulates, organizes data
• Accesses data
• Creates beautiful things: art, solutions, puzzles, ...
• Expands human capabilities

• But also: communicates complex computational ideas

Course Wrap-Up

CS134 in a Nutshell
• We have covered many topics this semester!

• We started out learning the basics of Python and programming in general

• Pre-midterm

• Types & Operators (int, float, %, //, /, concatenation, etc)

• Functions (variable scope, return vs print, defining vs calling functions)

• Booleans and conditionals (if elif else)

• Iteration: for loops, while loops, nested loops, accumulation variables in loops

• Sequences: strings (string methods, in/not in, iteration, etc) , lists (list methods,
append, extend, etc), ranges, tuples, lists of lists

• File reading: with … as , strip(), split()

• Mutability and aliasing

CS134 in a Nutshell
• Then we moved on to more advanced CS topics
• Post-midterm

• Data structures: More tuples, dictionaries, sets
• Sorting data with key functions

• Recursion: recursive methods and classes
• Graphical recursion with turtle graphics

• Classes, Objects, and OOP

• attributes, __slots__, special methods, getters, setters, inheritance
• “Bigger” OOP Examples: Tic-Tac-Toe, Boggle, LinkedList

• Advanced topics:
• Efficiency (Big-O), Searching and sorting, Iterators, Python vs. Java

Labs
• Hello, World!
• Day of the week (conditionals)
• Word puzzles (strings and loops)
• Voting algorithms (lists and loops)
• Debugging
• Name popularity (dictionaries and plotting)
• Recursion
• Autocomplete (classes and methods)
• Boggle (OOP, more classes and inheritance)
• Selection sort (Java)

Takeaway: What is Computer Science?
• Computer science computer programming!
• Computer science is the study of what computers [can]

do; programming is the practice of making computers do useful things
• Programming is a big part of computer science, but there is much

more to CS than just writing programs!
• Another part of CS is computational thinking

≠

https://www.edsurge.com/news/2015-12-02-computer-science-goes-beyond-coding

Take away: Computational Thinking
• Computational thinking allows us to develop solutions for complex problems. We

present these solutions such that a computer, a human, or both, can understand.

• Four pillars of CT:

• Decomposition - break down a complex problem into smaller parts

• Pattern recognition – look for similarities among and within problems

• Abstraction – focus on important information only, ignore irrelevant details

• Algorithms - develop a step-by-step solution to the problem

• A computer can performs billion of operations per second, but computers only do
exactly what you tell them to do!

• In this course we will learn learned how to 1) use CT to develop algorithms for
solving problems, and 2) implement our algorithms through computer programs

Goals from Lecture 1
• Abstraction and modularity
• Representing knowledge with data structures
• Iteration and recursion as computational tools
• Divide and conquer problem solving strategies
• Testing and debugging
• Organizing and dealing with data
• Plotting and visualizing data
• Playing with python graphics
• Transitioning from Python to Java (and beyond!)

Beyond CS134
• For those interested in continuing on the CS path:

• Obvious next step: take CS136 + Math 200

• Practice more Java over winter break: redo our labs in Java!

• In general, if you enjoy puzzles and programming, there are many ways
to practice these skills:

• Try Project Euler : Math + CS puzzles

• MIT course: The missing semester of your CS eduction

• Staying connected with CS as non-majors:

• Can still take CS136 and other courses!

• Come talk to us for more ideas

https://projecteuler.net/
https://missing.csail.mit.edu/

Course Evals Logistics
• Two parts: (1) SCS form, (2) Blue sheets (both online)
• Your feedback helps us improve the course and shape the CS curriculum

• Your responses are confidential and we only receive anonymized
comments after we submit our grades

• We appreciate your constructive feedback
• SCS forms are used for evaluation, blue sheets are open-ended

comments directed only to your instructor

To access the online evaluations, log into Glow (glow.williams.edu) using your
regular Williams username and password (the same ones you use for your
Williams email account). On your Glow dashboard you’ll see a course called
“Course Evaluations.” Click on this and then follow the instructions you
see on the screen. If you have trouble finding the evaluation, you can ask a

neighbor for help or reach out to ir@williams.edu.

Thank you!
WE MADE IT!

• You all should be proud of how much you’ve learned!
• Thank you for your patience and enthusiasm during these

somewhat crazy times
• Good luck on finals and have a great break!

The	end!

Leftover Slides

HTML Tables
• <table> ➡ Begins the table

• <tr> ➡ Begins a row

• <td>Text in cell 1</td> ➡ Adds a column within the row

• <td>Text in cell 2</td> ➡ Adds a column within the row

• <td>Text in cell 3</td> ➡ Adds a column within the row

• </tr> ➡ Ends a row

• <tr> ➡ Begins 2nd row

• <td>Text in cell 4</td> ➡ Adds a column within 2nd row

• </tr> ➡ Ends 2nd row

• </table> ➡ Ends the table

HTML Bulleted Lists
 ➡ Begins numbered list (i.e., ordered list)

1. Text goes here

2. Another numbered bullet item

 ➡ Ends numbered list

 ➡ Begins bulleted list(i.e., unordered list)

• Text goes here

• Another numbered bullet item

• Yet another numbered bullet item

 ➡ Ends bulleted list

