
CS134:  
Introduction to Java

Slide content based on http://www.cs.cmu.edu/~mjs/courses/121-F14-W/Java4Python.pdf

http://www.cs.cmu.edu/~mjs/courses/121-F14-W/Java4Python.pdf

Announcements & Logistics
• Lab 9 Boggle : Due tonight/tomorrow @ 10 pm

• Come talk to us if you have questions!
• HW 9 available today, due Mon @ 10 pm

• Covers “advanced” topics from recent lectures
• Last HW!

• Lab 10 Selection Sort in Java (next Mon/Tue)

• No pre-lab work; hope most of you will start and finish during your

lab session

• Final exam reminder: Friday, Dec 16 @ 9:30 AM

Do You Have Any Questions?

Last Time
• Briefly reviewed searching algorithms:

• : binary search runtime in a sorted array-based list

• : linear searching runtime in an unsorted list
• Discussed two classic sorting algorithms:

• : merge sort runtime

• : selection sort runtime
• What about (extra) space for sorting?

• : naive merge sort

• : selection sort
• Time-space tradeoff!

O(log n)

O(n)

O(n log n)

O(n2)

O(n)

O(1)
O(1)

O(n)

O(n2)

O(log n)

O(n log n)

Today
• Begin discussing Java

• Discuss how to run programs in Java

• Learn about Java syntax

• Take a closer look at data types in Java

• Goals of next 4-5 lectures:

• Understand the key similarities and differences between Python
and other programming languages (Java)

• Review basic features of Python in preparation for final exam

• Gain confidence in our programming abilities

• Help ease the transition to CS 136 (and beyond!)

Python vs. Java

• Powerful language used by
many programmers

• Features for making common
programming tasks relatively
simple

• Can run programs as scripts
or interactively

• Dynamically typed: Run-time
error when variables are used
incorrectly

• Good fit for teaching
programming to new
computer scientists

Python Java
• Powerful language used by

many programmers
• Features for building large-

scale systems design 

• Must be "compiled" and run
from terminal

• Statically typed: compile-time
error when variables are
used incorrectly

• Good fit for large software
projects, but steep learning
curve

Hello, World!
Python in Week 1:

Python in Week 11: Java:
def main():

 print("Hello, World!")

if __name__ == "__main__":

 main()

terminal% python3 hello.py

Hello, World!

print("Hello, World!")

terminal% python3 hello-simple.py

Hello, World!

public class Hello {

 public static void main(String args[]) {

 System.out.println("Hello, World!");

 }

}

terminal% javac Hello.java

terminal% java Hello

Hello, World!

Hello, World!
Java:Python:

def main():

 print("Hello, World!")

if __name__ == "__main__":

 main()

terminal% python3 hello.py

Hello, World!

public class Hello {

 public static void main(String args[]) {

 System.out.println("Hello, World!");

 }

}

terminal% javac Hello.java

terminal% java Hello

Hello, World!

def main():

 print("Hello, World!")

if __name__ == "__main__":

 main()

terminal% python3 hello.py

Hello, World!

public class Hello {

 public static void main(String args[]) {

 System.out.println("Hello, World!");

 }

}

terminal% javac Hello.java

terminal% java Hello

Hello, World!

Hello, World!
Python: Java:

Running Our Code
• Python is an interpreted language

• The Python interpreter runs through our code line by line and
executes each command

• Other interpreted languages: PHP, R, Ruby, and JavaScript
• Java is a compiled language*

• The Java compiler converts our code into machine code that the
processor can execute

• Compiled languages require code to be manually compiled
before execution

• Other compiled languages: C, C++, Haskell, Rust, and Go
• Interpreted languages were once significantly slower than compiled

languages. But that gap is shrinking.

*Technically Java is both interpreted and compiled, but we can ignore that detail for now.

• The compiler converts our Java source code
into compiled byte code which is faster to
run (hence the performance benefits)

• Java source files are always named
<file>.java

• To compile, type: 
javac <file>.java

• Compilers detect and report  
syntax errors before execution

• Compiler creates class files:  
<file>.class

• Code is executed by typing  
java <file>  
(without the .class extension)

public class Hello {

 public static void main(String args[]) {

 System.out.println("Hello, World!");

 }

}

terminal% ls Hello.*

Hello.java

terminal% javac Hello.java

terminal% ls Hello.*

Hello.class Hello.java

terminal% java Hello

Hello, World!

Using the Java Compiler

Important Java Rules

Important Java Rules
• Every Java program must define a class, and all code is inside a class.

• The file name must be the same as the class name (Hello.java).

• Every object in Java must have an explicit type.
• Every Java program that we want to execute must have a main

method: public static void main(String args[])

• Blocks of code contained within {} (versus indentation in Python)
• Statements end with ; (versus new line in Python)

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

• Every Java program must define a class, and all code is inside a class.

• The file name must be the same as the class name (Hello.java).

• Every object in Java must have an explicit type.
• Every Java program that we want to execute must have a main

method: public static void main(String[] args)

• Blocks of code contained within {} (versus indentation in Python)
• Statements end with ; (versus new line in Python)

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

Important Java Rules

This curly brace closes  
the one on line 1.

Define a class called Hello.  
Notice the curly brace.

• Every Java program must define a class, and all code is inside a class.

• The file name must be the same as the class name (Hello.java).

• Every object in Java must have an explicit type.
• Every Java program that we want to execute must have a main

method: public static void main(String[] args)

• Blocks of code contained within {} (versus indentation in Python)
• Statements end with ; (versus new line in Python)

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

Important Java Rules

Defines the main method. Similar to saying  
if __name__ == “__main__” in Python.

Opening curly braceClosing curly brace

• Every Java program must define a class, and all code is inside a class.

• The file name must be the same as the class name (Hello.java).

• Every object in Java must have an explicit type.
• Every Java program that we want to execute must have a main

method: public static void main(String[] args)

• Blocks of code contained within {} (versus indentation in Python)
• Statements end with ; (versus new line in Python)

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

Important Java Rules

Print “Hello, World!” to the terminal. Statements end with a ;

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

Public, Private, Protected

• public indicates to the Java compiler that this is a method that
anyone can call

• Java enforces several levels of security on methods (also variables and
classes): public, protected, and private

• Similar to _ and __ methods in Python, but more strictly enforced

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

static

• static indicates that this is a method that is part of the class, but is not a method for any
one instance of the class (static exists in both Java and Python!)

• Most methods we used in Python required an instance of the class in order for the method
to be called:
• Example: s.upper() (where s is a string and upper() is a method in the string class)

• With a static method, the object to the left of the . is a class, not an instance of the class.
• For example the way that we would call the main method directly is: Hello.main(…).
• Similar to Python modules (such as random) that don’t require an instance

• Example: random.randint(0,15)

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

void

• void tells the Java compiler that this method will not return a value

• void means “no type”
• Roughly analogous to omitting the return statement in a Python method

(or having an implicit return of None)

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

String args[]

• Our main method takes as input an array (denoted by []) of Strings
called args

• This is used for handling command-line arguments but we won't
worry about that now

• Since everything in Java must have a type, we also have to tell the compiler
that the types of values stored in our array are Strings

• Recall that arrays are a lot like lists in Python

1 public class Hello {

2 public static void main(String args[]) {

3 System.out.println("Hello, World!");

4 }

5 }

System.out and System.in

• System is a Java class
• Within the System class we find the object named out
• The out object is the standard output stream for this program. The in

object is the standard input stream. We’ll come back to that soon.

• The println method prints a string with a newline character at the end
• Anywhere in Python that you used the print(…) function you will use

the System.out.println(…) method in Java

Programming Language Features
• Basic features:

• Data Types
• Reading user input
• Loops
• Conditionals

• Advanced topics:

• Classes
• Interfaces
• Collections
• Graphical User Interface Programming

We have extensively studied all of these
features in Python. Let’s compare and

contrast with Java!

• Basic features:

• Data Types
• Reading user input
• Loops
• Conditionals

• Advanced topics:

• Classes
• Interfaces
• Collections
• Graphical User Interface Programming

Programming Language Features

Let’s start with data types and reading
user input.

Basic Data Types
• All data types in Python are objects

• Implemented using classes and methods just like our LinkedList

• Two types of data types in Java: primitive (non-objects) and Objects

• Example: int (lowercase) and Integer (uppercase)
• The benefit of primitive data types is fast operations
• We’ll mostly use the Object versions and let the compiler handle

conversions to primitives for us
• Java data types:

A Simple Example

Simple Example

• Consider this Python script: temp.py
• What does it do?

def main ():

 fahr = input ("Enter the temperature in F: ")

 cel = (float(fahr) - 32) * 5.0/9.0

 print ("The temperature in C is:" , cel)

if __name__ == "__main__":

 main()

Simple Example

• Consider this Python script: temp.py
• What does it do?

• Asks user to enter a temperature in Fahrenheit and converts the
string input to float

• Does the computation to convert temperature to Celsius
• Prints result

def main ():

 fahr = input ("Enter the temperature in F: ")

 cel = (float(fahr) - 32) * 5.0/9.0

 print ("The temperature in C is:" , cel)

if __name__ == "__main__":

 main()

Simple Example

• Same program in Java: TempConv.java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5 Double fahr;

6 Double cel;

7 Scanner in;

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

0 // this is a comment in Java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5 Double fahr;

6 Double cel;

7 Scanner in;

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

Simple Example

• Same program in Java: TempConv.java

Comments in Java start with //
compared to # in Python

0 // this is a comment in Java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5 Double fahr;

6 Double cel;

7 Scanner in;

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

Simple Example

• Java uses import statements to tell the compiler what classes to use

Java import statements are similar to  
from module import xxx

statements in Python

0 // this is a comment in Java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5 Double fahr;

6 Double cel;

7 Scanner in;

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

Simple Example

• Java is statically typed. Thus, all variables must be declared with a name and
type before they are used. Common convention is to declare variables at the top
of our methods/classes.

Lines 5-7 are variable declarations, which
define the name and type of our variables. Once

declared, the types cannot be changed.

0 // this is a comment in Java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5

6

7

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

Simple Example

• Let’s try to compile: javac TempConv.java

Note: Removing these lines will cause the
compiler to report several errors.

The compiler will report several
errors (sometimes repeatedly)
when we try to compile our
program after removing our

variable declarations.

0 // this is a comment in Java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5 Double fahr;

6 Double cel;

7 Scanner in;

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

Simple Example

• After declaring a Scanner object named in, we also have to
initialize it before using it (like calling __init__() in Python).

On Line 7 we give our Scanner the name in.  
On Line 9, we initialize our Scanner object with the

parameter System.in to read input from the user.

Note: Always use new when initializing new objects.

0 // this is a comment in Java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5 Double fahr;

6 Double cel;

7 Scanner in;

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

Simple Example

• System.out.print and System.out.println are like print in Python.
• in.nextDouble() automatically reads the user input as a Double (like using

input() in Python and then converting to float)

On Line 10 we print a prompt to the screen.  
On Line 11, we use our Scanner to read the
input value as a Double (a double precision

floating point number) and store the value as fahr.

An Aside: Using the Java Scanner
• Since Java is statically typed, we have to be extra careful when reading

input from the user to make sure it is of the expected type
• The Scanner class provides methods for making sure the next value

(like an iterator!) is of the expected type
• Here are some methods for the Java Scanner class

0 // this is a comment in Java

1 import java.util.Scanner;

2

3 public class TempConv {

4 public static void main (String args[]) {

5 Double fahr;

6 Double cel;

7 Scanner in;

8

9 in = new Scanner (System.in);

10 System.out.print("Enter the temperature in F: ");

11 fahr = in.nextDouble ();

12

13 cel = (fahr - 32) * 5.0/9.0;

14 System.out.println("The temperature in C is: " + cel);

15 }

16 }

Simple Example

On Line 13 we perform the calculation to convert.
On Line 14 we print the results.

• Arithmetic calculations in Java and Python are very similar wrt syntax
• When we print, we use the + operator to perform string concatenation

terminal% javac TempConv.java

terminal% java TempConv

Enter the temperature in F: 98.6

The temperature in C is: 37.0

terminal% java TempConv

Enter the temperature in F: 32

The temperature in C is: 0.0

Simple Example

• Before running our program, we compile using javac 
 
javac TempConv.java 

• To run, we use java 
 
java TempConv

]
]

]

The	end!

Recap:
Python vs. Java

 in = new Scanner (System.in);

 System.out.print("Enter the temperature in F: ");

 fahr = in.nextDouble ();

 cel = (fahr - 32) * 5.0/9.0;

 System.out.println("The temperature in C is: " + cel);

 fahr = input ("Enter the temperature in F: ")

 cel = (float(fahr) - 32) * 5.0/9.0

 print ("The temperature in C is:" , cel)

Recap: Python vs. Java

• Step 1: Prepare to read input from user.

]

]

Java:

Python:

 in = new Scanner (System.in);

 System.out.print("Enter the temperature in F: ");

 fahr = in.nextDouble ();

 cel = (fahr - 32) * 5.0/9.0;

 System.out.println("The temperature in C is: " + cel);

 fahr = input ("Enter the temperature in F: ")

 cel = (float(fahr) - 32) * 5.0/9.0

 print ("The temperature in C is:" , cel)

]

]

• Step 2: Prompt user for input.

Recap: Python vs. Java

Java:

Python:

 in = new Scanner (System.in);

 System.out.print("Enter the temperature in F: ");

 fahr = in.nextDouble ();

 cel = (fahr - 32) * 5.0/9.0;

 System.out.println("The temperature in C is: " + cel);

 fahr = input ("Enter the temperature in F: ")

 cel = (float(fahr) - 32) * 5.0/9.0

 print ("The temperature in C is:" , cel)

]

]]

• Step 3: Read user input and convert to float/double (that is, a number
with a decimal point).

Recap: Python vs. Java

Java:

Python:

 in = new Scanner (System.in);

 System.out.print("Enter the temperature in F: ");

 fahr = in.nextDouble ();

 cel = (fahr - 32) * 5.0/9.0;

 System.out.println("The temperature in C is: " + cel);

 fahr = input ("Enter the temperature in F: ")

 cel = (float(fahr) - 32) * 5.0/9.0

 print ("The temperature in C is:" , cel)

]

]

• Step 4: Perform conversion to Celsius.

Recap: Python vs. Java

Java:

Python:

 in = new Scanner (System.in);

 System.out.print("Enter the temperature in F: ");

 fahr = in.nextDouble ();

 cel = (fahr - 32) * 5.0/9.0;

 System.out.println("The temperature in C is: " + cel);

 fahr = input ("Enter the temperature in F: ")

 cel = (float(fahr) - 32) * 5.0/9.0

 print ("The temperature in C is:" , cel)

]

]

• Step 5: Print result.

Recap: Python vs. Java

Java:

Python:

An Aside: Java GUIs
• Java has more built-in support for making

GUIs and supporting graphical objects
• Here is a graphical version of our

program

