CS|34:
[terators

Announcements & Logistics

Lab 8 feedback coming soon! (Sorry!)
Lab 9 Boggle
Parts 3 (BoggleGame) due Nov 30/Dec |

Attendance in lab is optional next week

Do You Have Any Questions?

Last [Ime

- Started the implementation of our own linked list class
- Why! Help us understand what's happening in Python's built-in classes
- A glimpse of data structure design (precursor to CS|36)

- Implemented several special methods:

e __init__, str len contains__ (in), __add__ (+)

—_— —_) —_— _y -

_value _value _value

_rest _rest _rest

loday's Plan
- Wrap up our linked list class:

__getitem setitem__ ([] brackets to get/set value at index)

* Lookat __eq__, prepend, append, insert
Discuss how we can turn our LinkedList into an “iterable" object

- This will allow us to iterate over our lists in a for loop

* Implement more special methods: __1ter__and __next__

_value _value _value

—> El > [»>

_rest _rest _rest

| | Operator: __getitem__, __setitem__

e __getitem__(self, 1ndex) and
__setitem__(self, index, val)

* In lists, we can get or set an item at a specific index using []

+ gettval = mylist[1]
setmylist[2] = newVal

* To support the [] operator in our L1nkedL1st class, we need to
implement __getitem__ and __setitem__

« Basic idea:
- Walk out to the element at 1hdex

» (Get or set value at that index accordingly

Recursive!

| | Operator: __getitem__, __setitem__

We can get the item at a specific index using the [] operator
(eg,val = mylist[2])

def __getitem__(self, index):
1f i1ndex == This s 1h
is is the same as
elset:'etur'n self._value self._rest.__getitem__(index-1)

return self._rest[index - 1]

>>> myList = LinkedList(5, LinkedlList(3, LinkedList(11)))
>>> print(myList[2])
11

__getitem__(2) __getitem__(0)

1f index == 0:
return LinkedList(11)._value

__getitem__(1) — / /

return LinkedList(11)[0] 1 1

return LinkedList(3, LinkedList(11))[1]

| | Operator: __getitem__, __setitem__

+ We can also set the item at a specific index using the [] operator
(eg,mylist[2]

newVal)

[] list index notation also calls __setitem___ () method
index specifies which item we want, val 1s new value
def _ setitem__(self, index, val):
if index is @, we found the item we need to update
if index == 0:
self._value = val
else:
else we recurse until index reaches 0
remember that this implicitly calls __setitem__
this is the same as self._rest.__setitem__(index - 1, val)
self._rest[index - 1] = val

== Operator: __eq__
e eg__(self, other)

* When using lists, we can compare their values using the == operator

» To support the == operator in our LinkedL1st class, we need to

implement __eq__

« We want to walk the lists and check the values

Make sure the sizes of lists match, too

== Operator: __eq__
e _eqg__(self, other)

» To support the == operator in our LinkedL1st class, we need to

implement __eq__

== operator calls __eq__() method

if we want to test two LinkedLists for equality, we test

if all items are the same

other is another LinkedList

def __eq__(self, other):

If both lists contain 0 or 1 item(s)

if self._rest is None and other.getRest() is None:
return self._value == other.getValue()

®H B B R

If both lists are not empty, then value of current list elements
must match, and same should be recursively true for
rest of the list
elif self._rest is not None and other.getRest() is not None :
return self._value == other.getValue() and self._rest == other.getRest()

If we reach here, then one of the lists is empty and
other is not, so return false
else:

return False

Useful list methods:
.append(), .prepend(), .insert()

B) .0 = \ /e

Useful List Method: append

e append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

« BRasic idea:

« Walk to end of list

» Create a new LinkedL1st(val) and add it to the end
value

rest

_value val ue val ue

rest

Useful List Method: append

e append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

Basic idea:

- Walk to end of list

- Create a new LinkedL1st(val) and add it to the end

_value _value _value _value

- El > [> 7 >

_rest _rest _rest _rest

Useful List Method: append

e append(self, val)

- When using lists, we can add an element to the end of an existing list
by calling append (note that append mutates our list)

» This entails setting the _rest attribute of the last element to be a
new LinkedList with the given value.

append is not a special method, but it is a method
that we know and love from the Python list class.
def append(self, val):
if this is the last item
if self._rest is None:
add a new LinkedList to the end
self._rest = LinkedList(val)
else:
else recurse until we find the end
self._rest.append(val)

Useful List Method: prepend

e prepend(self, val)

- We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

+ The prepend operation is really efficient, we don't need to walk

through the list at all — just do some variable reassignments.

prepend allows us to add an element to the beginning of our list.
like append, it will mutate the LinkedList instance it is called on.
LinkedLists are really fast at doing prepend operations!
No recursion required, just a few variable re-assignments!
def prepend(self, val):
oldval = self._value
oldRest = self._rest
self._value = val
self._rest = LinkedList(oldVal, oldRest)

_value _value _value

self + + +

T _rest _rest " _rest

Useful List Method: prepend

e prepend(self, val)

- We may also want to add elements to the beginning of our list
(this will mutate our list, similar to append)

+ The prepend operation is really efficient, we don't need to walk

through the list at all — just do some variable reassignments.

prepend allows us to add an element to the beginning of our list.
like append, it will mutate the LinkedList instance it is called on.
LinkedLists are really fast at doing prepend operations!
No recursion required, just a few variable re-assignments!
def prepend(self, val):
oldval = self._value
oldRest = self._rest
self._value = val
self._rest = LinkedList(oldVal, oldRest)

_value _value _value _value

" > ER > [f >

_rest _rest _rest _rest

Useful List Method: 1hsert

e insert(self, val, index)
Finally, we want to allow for insertions at a specific index.
Basic idea:
If the specified index is 0, we can just add to the beginning (easy!)

Otherwise, we walk to the appropriate index in the list, and

reassign the _rest attribute at that location to point to a new

LinkedList with the given value, and whose _rest attribute points
to the linked list it Is displacing.

= S

_rest

_vdlue

_value _vdlue _value

T

_rest _rest _rest

Useful List Method: 1hsert

e insert(self, val, index)
Finally, we want to allow for insertions at a specific index.
Basic idea:
If the specified index is 0, we can just add to the beginning (easy!)

Otherwise, we walk to the appropriate index in the list, and

reassign the _rest attribute at that location to point to a new
LinkedList with the given value, and whose _rest attribute points
to the linked list it Is displacing.

_value _value _value _value

- El - > F >

_rest _rest _rest _rest

Useful List Method: 1hsert

e insert(self, val, index)
+ If the specified index is O, we can just use the prepend method.

- Otherwise, we walk to the appropriate index in the list, and
perform the insertion

here 1is a recursive version of insert
def insert(self, val, index):
1if index is 0, we found the item we need to return
if index == 0:
return self.prepend(val)
else:
else we recurse until index reaches 0
return self._rest.insert(val, index - 1)

Iterating Over Our List

=) @ 5 \ /e

terating Over Our List

* We can iterate over a Python listin a for loop

» It would be nice if we could iterate over our LinkedL1st in a for loop

- This won't quite work right now

for item in myList:
print(item)

TypeError Traceback (most recent call last)
<ipython-input-108-4bf86db75685> in
——==> 1 for item in myList:

2 print(item)
<ipython-input-104-8a5ab5d1919c> in (self, index)

68 # else we recurse until index reaches 0

69 # remember that this implicitly calls _ getitem
-—=> 70 return self. rest[index - 1]

71

TypeError: 'NoneType' object is not subscriptable

terating Over Our List

- Currently, we can only indirectly iterate over our LinkedList using a loop

and a range object.

- We'd really like to iterate directly over the elements of the list (without

using a range)

- An aside: Given our LinkedList implementation, this loop Is very

inefficient! Each call newL1st[1] walks the list out to index 1 each

time.

newList = LinkedList(5)
newList.append(10)
newList.append(42)

for i in range(len(newList)):
print(newList[i])

5
10
42

Making our List Iterable

- What do we need to directly iterate over our linked list?

« We need to make our class iterable

* We need to implement the special methods __1ter__ and
__hext__

« First, let's start with a few definitions

Making our List Iterable

» A Python object is considered iterable if it supports the 1ter()
function: that is, the special method __1ter__ is defined

- All sequences in Python are iterable, e.g, strings, lists, ranges, tuples,
even files

- We can iterate over an iterable object directly in a for loop

* When an iterable object is passed to the 1ter() function, it
creates an iterator

- An iterator object can generate values from the sequence on demand

» This is accomplished using the next () function (and __next__
method) which simply provides the "next" value in the sequence

- Note: iterable is an adjective, iterator is a noun, iterate is a verb

Python's Bullt-in Iterable Types

We can create iterators for lists/strings/ [>s> charlist = 1ist("rain")
tuples by passing them to 1ter() >>> print(charlist)

['rll, 'a', '.i-', 'n']

Benefit! VWe can generate values from |s>> charIterator = iter(charlList)

the sequence on demand (one at a time) |>>> next(charIterator)
r

An iterator maintains “state” between | .. next(charIterator)
calls to next() (it remembers where |'a

we are) >>> next(charlterator)
;i

Once all values in the sequence have >>> next(charIterator)

been Iterated over, the iterator "runs 'n'

dry" (and becomes empty) >>> next(charIterator)
Traceback:

VWe can only Iiterate over values once File "<stdin>", line 1

(unless we create another iterator) StopIteration

This means there are
no elements left!

Creating an [terator

- Jo create an iterator for our class we need to implement two methods:

- __1ter__() which is called to creates the iterator

- __next__() which is called to advance to the next value

 The key aspect of creating iterators: maintaining state to keep track of
where you are currently in the sequence (and what is the next value
that should be returned)

* Thus, __1ter__() should always "reset" the current state to the

beginning of our list,and __next__() should update this state (i.e,,
move to the next element) each time its called

- Python for loops automatically (and implicitly) create an iterator and call
next() until the StopIteration exception is reached (see leftover
slides at the end for more info!)

Creating an Iterator for LinkedList

* First we add a new attribute '_current'to __slots__

* _current keeps track of where we are in the iterator

def __iter_ (self):
set current attribute to head (front of list)
self._current = self

testList = LinkedList()
return self

testList.append("w")

testList.append("o")

testList.append("o")

testList.append("t")

for char in testList:
print (char)

def _ next__(self):
if self._current is None:
we have reached the end of the list
raise StopIteration
else:

advance current to the next element in the list W
val = self._current._value .
self._current = self._current._rest o
return val £

_current *I
_value _value _value _value

> > > >

_rest _rest _rest _rest

Creating an Iterator for LinkedList

* First we add a new attribute '_current'to __slots__

* _current keeps track of where we are in the iterator

def __iter_ (self):
set current attribute to head (front of list)
self._current = self

testList = LinkedList()
return self

testList.append("w")

testList.append("o")

testList.append("o")

testList.append("t")

for char in testList:
print (char)

def _ next__(self):
if self._current is None:
we have reached the end of the list
raise StopIteration
else:
advance current to the next element in the list

\
val = self._current._value o
self._current = self._current._rest -
return val
t
_current
_value _value _value _value

> > > >

_rest _rest _rest _rest

Creating an Iterator for LinkedList

* First we add a new attribute '_current'to __slots__

* _current keeps track of where we are in the iterator

def __iter_ (self):
set current attribute to head (front of list)
self._current = self

testList = LinkedList()
return self

testList.append("w")

testList.append("o")

testList.append("o")

testList.append("t")

for char in testList:
print (char)

def _ next__(self):
if self._current is None:
we have reached the end of the list
raise StopIteration
else:
advance current to the next element in the list

w
val = self._current._value o
self._current = self._current._rest o
return val
t
_current *
_value _value _value _value

> > > >

_rest _rest _rest _rest

Creating an Iterator for LinkedList

* First we add a new attribute '_current'to __slots__

* _current keeps track of where we are in the iterator

def __iter_ (self):
set current attribute to head (front of list)
self._current = self

testList = LinkedList()
return self

testList.append("w")

testList.append("o")

testList.append("o")

testList.append("t")

for char in testList:
print (char)

def _ next__(self):
if self._current is None:
we have reached the end of the list
raise StopIteration
else:
advance current to the next element in the list

W
val = self._current._value o
self._current = self._current._rest o
return val
t
_current
_value _value _vatLue _value

> > > >

_rest _rest _rest _rest

Creating an Iterator for LinkedList

* First we add a new attribute '_current'to __slots__

* _current keeps track of where we are in the iterator

def __iter_ (self):
set current attribute to head (front of list)

self._current = self testList = LinkedList()

return self This means there are testList.append("w")
_ no elements |eft! testList.append("o")
e e oot EpEndl(e |
— i /////// testList.append("t")
_ _ ' for char in testList:
raise Stoplteration]
else: print (char)
advance current to the next element in the list W
val = self._current._value o
self._current = self._current._rest o
return val £
_value _value _value I
_current
_rest _rest _rest\ _rest

Using our New [terable LinkedList

testList = LinkedList("w")
testList.append("0")
testList.append("0")
testList.append("t")
print("testList: ",testList)

for loops automatically use iterators
for char in testList:
print(char)

testList: [w, o, O, t]
w

o
o
t
listIterator = iter(testList)

print(next(listIterator))
print(next(listIterator))
print(next(listIterator))
print (next(listIterator))

&+ 0 0 £

H D @ = \ /.
T IEEEINT

Leftover Slides

7N

B) .0 = \ /&

For loop: Behind the Scenes

- A for loop in Python iterates directly over iterable objects. For example:

a simple for loop to iterate over a list
for i1tem in numList:
print(item)

- Behind the scenes, the for loop is simply a while loop in disguise, driving iteration
within a try-except statement. The above loop Is really:

ry .
t y-i_t — iter(numList) Call the 1ter method on object
while True:
1tem = next(it)
print(item)
except StopIte ration: Access the heXt item if it exists, then print it

pass
This is a way to “hide" the error

As Aside: try-except blocks

- The try/except block has the following form:
try:

<possibly faulty suite>
except <error>:

<Ccleanup suite>

+ The <possibly faulty suite> isa collection of statements that
has the potential to faill and generate an error.

- If the failure occurs, rather than causing the program to crash, the
statements inside the except branch are run

* You can even have more than one except, to handle different types of
errors

- Fortunately, Python handles this automatically for us in for loops!

What's Next in CS134

Pre-midterm

Emphasis on basics of programming (conditionals, loops, etc)
Python's built-in data structures: lists, dictionaries, tuples, sets
Scripts, modules, and functions

Post-midterm
Advanced programming topics
Recursive functions
Classes and OOP

Recursive data structures

Brief introduction to searching/sorting and efficiency analysis

JAVA!

