
CS134:
Tic Tac Toe (3)

TTTLetter & Game

Announcements & Logistics
• HW 8 due tonight @ 10 pm
• No new HW this week

• Lab 9 Boggle starts today/tomorrow: Lab is decomposed into three
logical parts

• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Wed/Thur 10 pm
• We will run our tests on these and return automated feedback (similar

to Lab 4 part 1), but you are allowed to revise it afterwards
• Parts 3 (BoggleGame) due Nov 30/Dec 1
• Please spend time planning and thinking about design with your partner

before your lab session!

Do You Have Any Questions?

Last Time
• (Briefly) Looked at important helper methods in the Board class

• Discussed how to build the TTTBoard class

• Added a grid of TTTLetters to the Board class

• Discussed logic to check for win on TTTBoard
• Any questions?

Board

TTTBoard
TTTLetter

Game

• Finish our game! Woohoo!
• Implement TTTLetter

• We already have a good sense of what it should do after our last
class, but let’s look at the details

• Implement the game logic
• Keep track of mouse clicks
• Keep track of players ("X" and "O" alternate)

• Use methods in TTTLetter and TTTBoard to check for win
after each move

Today’s Plan

TTTLetter Class

Board
TTT Board

TTTLetter

TTT Letters
• We have already seen a glimpse of what TTTLetters needs to do

• In fact it has to support this functionality for TTTBoard!

TTTLetter : __init__
• Let’s think about __init__ first

• Use passed-in parameters (col, row, letter) to initialize
__slots__ attributes

from graphics import *
from board import Board

class TTTLetter:
 __slots__ = ['_row', '_col', '_textObj', '_rect']

 def __init__(self, board, col=-1, row=-1, letter=""):

 # variables needed for graphical testing
 xInset = board.getXInset()
 yInset = board.getYInset()
 size = board.getSize()
 win = board.getWin()

 # set row and column attributes
 self._col = col
 self._row = row

 # make rectangle and add to graphical window
 p1 = Point(xInset + size * col, yInset + size * row)
 p2 = Point(xInset + size * (col + 1), yInset + size * (row + 1))
 self._rect = board._makeRect(p1, p2, "white")

 # update text in center of rectangle
 self._textObj = Text(self._rect.getCenter(), letter)
 self._textObj.draw(win)

initialize __slots__
attributes

initialize __slots__
attributes

initialize __slots__
attributes

TTTLetter: Getters, Setters, __str__
• Now let’s implement the necessary getter/setter methods

• We don’t need/want to expose the Text object
• We don’t want to allow the row, col to be changed
• We only expose the string (letter) of the Text object, so they are the only

getter/setter methods we need

• __str__ useful for debugging and testing
 def getLetter(self):
 return self._textObj.getText()

 def setLetter(self, char):
 self._textObj.setText(char)
 if char == 'X':
 self._rect.setFillColor("light blue")
 elif char == 'O':
 self._rect.setFillColor("pink")
 else:
 self._rect.setFillColor("white")

 def __str__(self):
 l, col, row = self.getLetter(), self._col, self._row
 return "{} at Board position ({}, {})".format(l, col, row)

Testing TTTLetter
• It’s always a good idea to test our class and methods in isolation

win = GraphWin("Tic Tac Toe", 400, 400)
board = Board(win, rows=3, cols=3)

letter = TTTLetter(board, 1, 1, "A")
letter2 = TTTLetter(board, 1, 2, "O")
letter3 = TTTLetter(board, 2, 1, "B")

A B

O

Testing TTTLetter
• It’s always a good idea to test our class and methods in isolation

win = GraphWin("Tic Tac Toe", 400, 400)
board = Board(win, rows=3, cols=3)

letter = TTTLetter(board, 1, 1, "A")
letter2 = TTTLetter(board, 1, 2, "O")
letter3 = TTTLetter(board, 2, 1, "B")

letter2.setLetter("O")
print(letter2)

A B

O

O at Board position (1, 2)

TTT Game Logic

Board
TTT Board

TTTLetter

Game

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Let’s think about the
“common” case: a valid move in

the middle of the game

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click Grid?
Y Empty

space? Win?
Y

Draw?

N

N Change
players

Y Reset
state

Y

N

Now let’s consider the case of a
win, draw, or invalid move

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Grid?
Y

N

YReset
state

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses reset

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

Now’s let suppose a player
chooses exit

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
playersFinally, let’s

handle the click
that may be

outside of any
of the “valid”

regions

Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the

game at various stages

Start
Wait for

mouse click

Reset?

Exit?

Grid?
Y

N

N

N

YReset
state

Y
End

Empty
space? Win?

Y Y Reset
state

Draw?

N

Y

N

N

Change
players

• Let’s think about __init__:

• What do we need?
• a board, player, and maybe numMoves (to detect draws easily)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

def doOneClick(self, point):
 """
 Implements logic for processing one

 click. Returns True if play should
 continue, & False if game is over.

 """
 # step 1: check for exit button
 # and exit (return False)
 if self._board.inExit(point):

 # step 2: check for reset button
 # and reset game
 elif self._board.inReset(point):

 # step 3: check if click is on a cell
 #in the grid
 elif self._board.inGrid(point):

 # keep going!
 return True

• Now let’s write a method for handling a single mouse click (point)
• We need a few if-elif-else checks to handle the grid/reset/exit check
• Let’s start with that logic and fill the rest in later

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

???????????????

????????????????

???????????????

def doOneClick(self, point):
 """
 Implements logic for processing one

 click. Returns True if play should
 continue, & False if game is over.

 """
 # step 1: check for exit button
 # and exit (return False)
 if self._board.inExit(point):

 # step 2: check for reset button
 # and reset game
 elif self._board.inReset(point):

 # step 3: check if click is on a cell
 #in the grid
 elif self._board.inGrid(point):

 # keep going!
 return True

• Now let’s write a method for handling a single mouse click (point)
• We need a few if-elif-else checks to handle the grid/reset/exit check
• Let’s start with that logic and fill the rest in later

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

step 1: check for exit button and exit (return False)
if self._board.inExit(point):

game over
return False

• Now let’s handle reset

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

step 2: check for reset button and reset game
elif self._board.inReset(point):
 self._board.reset()
 self._board.setStringToUpperText("")
 self._numMoves = 0
 self._player = "X"

• Finally, let’s handle a “normal” move. Start by getting point and TTTLetter

Translating our Logic to Code

Start Wait for
mouse click

Reset?

Exit?

Grid?

Reset
state

End

Empty? Win? Reset
state

Draw?

Change
players

Y

N

N

N

Y

Y

Y Y

N

Y

N

N

step 3: check if click is on a cell in the grid
elif self._board.inGrid(point):

 # get the letter at the point the user clicked
 tlet = self._board.getTTTLetterAtPoint(point)

• The rest of our
code checks for a
valid move, a win, a
draw, and updates
state accordingly

• At the end, if the
move was valid, we
swap players

Translating our Logic to Code
make sure this square is vacant
if tlet.getLetter() == "":
 tlet.setLetter(self._player)

 # valid move, so increment numMoves
 self._numMoves += 1

 # check for win or draw
 winFlag = self._board.checkForWin(self._player)
 if winFlag:
 self._board.setStringToUpperText(self._player+" WINS!")
 elif self._numMoves == 9:
 self._board.setStringToUpperText("DRAW!")
 # not a win or draw, swap players
 else:
 # set player to X or O
 if self._player == "X":
 self._player = "O"
 else:
 self._player = "X"

• The rest of our
code checks for a
valid move, a win, a
draw, and updates
state accordingly

• At the end, if the
move was valid, we
swap players

Translating our Logic to Code
make sure this square is vacant
if tlet.getLetter() == "":
 tlet.setLetter(self._player)

 # valid move, so increment numMoves
 self._numMoves += 1

 # check for win or draw
 winFlag = self._board.checkForWin(self._player)
 if winFlag:
 self._board.setStringToUpperText(self._player+" WINS!")
 elif self._numMoves == 9:
 self._board.setStringToUpperText("DRAW!")
 # not a win or draw, swap players
 else:
 # set player to X or O
 if self._player == "X":
 self._player = "O"
 else:
 self._player = "X"

TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTLetter: isolate functionality of a single TTTLetter on board

• Think about what features are necessary/helpful in other classes

• TTTGame: think through logic conceptually before writing any code

• Translate logic into code carefully, testing along the way

Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the

game state of Boggle is more complicated
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual
methods

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as
needed)

• Discuss logic with partner/instructor before writing any code

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

The	end!

CS134:
Lab 9

Lab 9 Overview
• User-defined Types with Inheritance!

• Using the Board class from...class

• Multi-week partners lab (counts as two labs in terms of grade; Lab is
decomposed into three logical parts)

• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Nov 16/17
• We will run our tests on these and return automated feedback

(similar to Lab 4 part 1); you are allowed/encouraged to revise it
afterwards

• Parts 3 (BoggleGame) (and revised Parts 1 and 2) due Nov 30/
Dec 1

Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the

game state of Boggle is more complicated
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual
methods

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as
needed)

• Discuss logic with partner/instructor before writing any code

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!

Working with a Partner
• "Pair Programming" (or programming with a partner) is an Agile

software development technique from Extreme Programming
• It's used in the real world!
• Produces better solutions than produced individually!
• Spreads knowledge!

• It's good to be able to talk through complex ideas with someone else
before diving into implementation details

• Benefit from both partners' knowledge of problem-solving &
debugging

git with a Partner

Repository	or	“repo”

Pair	Programming:	One	person	
"drives",	take	turns	who	uses	keyboard/

mouse

BoggleLetter.py

Discuss	your	design	ideas	with	your	partner!!	
Identify	bugs	&	bug	fixes	together!

git with a Partner

Repository	or	“repo”

Jigsaw	Programming:		
Two	partners,	two	different	Python	files!

BoggleLetter.py

Discuss	your	design	ideas	with	your	partner!!	
Identify	bugs	&	bug	fixes	together!

BoggleBoard.py

git with a Partner

Repository	or	“repo”

Jigsaw	Programming:		
Two	partners,	two	different	Python	files!

BoggleLetter.py

Discuss	your	design	ideas	with	your	partner!!	
Identify	bugs	&	bug	fixes	together!

BoggleBoard.py

If an editor opens up saying
files were merged: that's

okay, just save & exit
("Ctrl+x" and then "y")

git with a Partner

DO	NOT	WORK	ON	THE	SAME	FILE	AT	
THE	SAME	TIME!

There	will	be	frustration!

And	suffering!

And	Lida	will	probably	have	to	save	you!

DO:	Talk	to	your	partner	a	lot!

Git Reminders
• If machine doesn't have the repo, git clone the repo

• Grab URL from https://evolene.cs.williams.edu/ (or Lida's email)

• git clone <URL HERE>
• git add/commit/push frequently, as you get work done

• To grab your partner's edits, git pull

• (if you've already git cloned the repo)

• If you have not git cloned the repo, then git clone

https://evolene.cs.williams.edu/

Git Workflow Reminder
• Starting a work session:

• Always pull most recent version before making any edits (clone if using a new
machine)

• Middle of a work session:
• Commit changes to all files first (git commit -am "message") commits changes to

all files already on evolene
• After commit, pull again to get your partner's edits
• If an editor opens up saying files were merged: that's okay, just save & exit

("Ctrl+x" and then "y")
• Then push your edits to evolene (can check evolene to make sure it worked)

• Do the above steps (commit, pull, push) frequently
• Can check status anytime by typing git status
• Let us know if you face any issues!

Do You Have Any Questions?

