
CS134:  
Tic Tac Toe (3) 

TTTLetter & Game



Announcements & Logistics
• HW 8 due tonight @ 10 pm
• No new HW this week

• Lab 9 Boggle starts today/tomorrow:  Lab is decomposed into three 
logical parts

• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Wed/Thur 10 pm 
• We will run our tests on these and return automated feedback (similar 

to Lab 4 part 1), but you are allowed to revise it afterwards
• Parts 3 (BoggleGame) due Nov 30/Dec 1
• Please spend time planning and thinking about design with your partner 

before your lab session!  

Do You Have Any Questions?



Last Time
• (Briefly) Looked at important helper methods in the Board class

• Discussed how to build the TTTBoard class

• Added a grid of TTTLetters to the Board class 

• Discussed logic to check for win on TTTBoard
• Any questions?

Board

TTTBoard
TTTLetter

Game



• Finish our game!  Woohoo!
• Implement TTTLetter 

• We already have a good sense of what it should do after our last 
class, but let’s look at the details

• Implement the game logic 
• Keep track of mouse clicks
• Keep track of players ("X" and "O" alternate)

• Use methods in TTTLetter and TTTBoard to check for win 
after each move

Today’s Plan



TTTLetter Class

Board
TTT   Board

TTTLetter



TTT Letters
• We have already seen a glimpse of what TTTLetters needs to do

• In fact it has to support this functionality for TTTBoard!



TTTLetter : __init__
• Let’s think about __init__ first

• Use passed-in parameters (col, row, letter) to initialize 
__slots__ attributes

from graphics import * 
from board import Board 

class TTTLetter: 
    __slots__ = ['_row', '_col', '_textObj', '_rect'] 

    def __init__(self, board, col=-1, row=-1, letter=""): 

        # variables needed for graphical testing 
        xInset = board.getXInset() 
        yInset = board.getYInset() 
        size = board.getSize() 
        win = board.getWin() 

        # set row and column attributes 
        self._col = col 
        self._row = row 

        # make rectangle and add to graphical window 
        p1 = Point(xInset + size * col, yInset + size * row) 
        p2 = Point(xInset + size * (col + 1), yInset + size * (row + 1))         
        self._rect = board._makeRect(p1, p2, "white") 

        # update text in center of rectangle 
        self._textObj = Text(self._rect.getCenter(), letter) 
        self._textObj.draw(win) 

initialize __slots__ 
attributes

initialize __slots__ 
attributes

initialize __slots__ 
attributes



TTTLetter:  Getters, Setters, __str__
• Now let’s implement the necessary getter/setter methods

• We don’t need/want to expose the Text object
• We don’t want to allow the row, col to be changed
• We only expose the string (letter) of the Text object, so they are the only 

getter/setter methods we need

• __str__ useful for debugging and testing
    def getLetter(self): 
       return self._textObj.getText() 

    def setLetter(self, char): 
        self._textObj.setText(char) 
        if char == 'X': 
            self._rect.setFillColor("light blue") 
        elif char == 'O': 
            self._rect.setFillColor("pink") 
        else: 
            self._rect.setFillColor("white") 

    def __str__(self): 
        l, col, row = self.getLetter(), self._col, self._row 
        return "{} at Board position ({}, {})".format(l, col, row)



Testing TTTLetter
• It’s always a good idea to test our class and methods in isolation

win = GraphWin("Tic Tac Toe", 400, 400) 
board = Board(win, rows=3, cols=3) 

letter = TTTLetter(board, 1, 1, "A") 
letter2 = TTTLetter(board, 1, 2, "O") 
letter3 = TTTLetter(board, 2, 1, "B") 

A B

O



Testing TTTLetter
• It’s always a good idea to test our class and methods in isolation

win = GraphWin("Tic Tac Toe", 400, 400) 
board = Board(win, rows=3, cols=3) 

letter = TTTLetter(board, 1, 1, "A") 
letter2 = TTTLetter(board, 1, 2, "O") 
letter3 = TTTLetter(board, 2, 1, "B") 

letter2.setLetter("O") 
print(letter2)

A B

O

O at Board position (1, 2)



TTT Game Logic
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Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages

Start
Wait for 

mouse click Grid?
Y Empty 

space? Win?
Y

Draw?

N

N Change 
players

Let’s think about the 
“common” case: a valid move in 

the middle of the game



Finally…TTT Game Logic
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Now let’s consider the case of a 
win, draw, or invalid move



Finally…TTT Game Logic
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Finally…TTT Game Logic
• Let’s create a TTT flowchart to help us think through the state of the 

game at various stages
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• Let’s think about __init__:

• What do we need?
• a board, player, and maybe numMoves (to detect draws easily)

Translating our Logic to Code
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def doOneClick(self, point): 
        """ 
        Implements logic for processing one  

 click. Returns True if play should   
 continue, & False if game is over. 

        """ 
        # step 1: check for exit button  
        # and exit (return False) 
        if self._board.inExit(point): 
       

        # step 2: check for reset button  
        # and reset game 
        elif self._board.inReset(point): 

        # step 3: check if click is on a cell  
        #in the grid 
        elif self._board.inGrid(point): 

        # keep going! 
        return True

• Now let’s write a method for handling a single mouse click (point)
• We need a few if-elif-else checks to handle the grid/reset/exit check
• Let’s start with that logic and fill the rest in later

Translating our Logic to Code
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def doOneClick(self, point): 
        """ 
        Implements logic for processing one  

 click. Returns True if play should   
 continue, & False if game is over. 

        """ 
        # step 1: check for exit button  
        # and exit (return False) 
        if self._board.inExit(point): 
           

        # step 2: check for reset button  
        # and reset game 
        elif self._board.inReset(point): 

        # step 3: check if click is on a cell  
        #in the grid 
        elif self._board.inGrid(point): 

        # keep going! 
        return True

• Now let’s write a method for handling a single mouse click (point)
• We need a few if-elif-else checks to handle the grid/reset/exit check
• Let’s start with that logic and fill the rest in later

Translating our Logic to Code
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• Let’s handle the “exit” button first (since it’s the easiest)

Translating our Logic to Code
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# step 1: check for exit button and exit (return False) 
if self._board.inExit(point): 

# game over 
return False



• Now let’s handle reset

Translating our Logic to Code
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# step 2: check for reset button and reset game 
elif self._board.inReset(point): 
     self._board.reset() 
     self._board.setStringToUpperText("") 
     self._numMoves = 0 
     self._player = "X"



• Finally, let’s handle a “normal” move.  Start by getting point and TTTLetter

Translating our Logic to Code
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# step 3: check if click is on a cell in the grid 
elif self._board.inGrid(point): 

    # get the letter at the point the user clicked 
    tlet = self._board.getTTTLetterAtPoint(point)



• The rest of our 
code checks for a 
valid move, a win, a 
draw, and updates 
state accordingly

• At the end, if the 
move was valid, we 
swap players

Translating our Logic to Code
# make sure this square is vacant 
if tlet.getLetter() == "": 
   tlet.setLetter(self._player) 

   # valid move, so increment numMoves 
   self._numMoves += 1 

   # check for win or draw 
   winFlag = self._board.checkForWin(self._player) 
   if winFlag:                     
        self._board.setStringToUpperText(self._player+" WINS!") 
   elif self._numMoves == 9: 
        self._board.setStringToUpperText("DRAW!") 
   # not a win or draw, swap players 
   else: 
       # set player to X or O 
       if self._player == "X": 
          self._player = "O" 
       else: 
          self._player = "X"



• The rest of our 
code checks for a 
valid move, a win, a 
draw, and updates 
state accordingly

• At the end, if the 
move was valid, we 
swap players

Translating our Logic to Code
# make sure this square is vacant 
if tlet.getLetter() == "": 
   tlet.setLetter(self._player) 

   # valid move, so increment numMoves 
   self._numMoves += 1 

   # check for win or draw 
   winFlag = self._board.checkForWin(self._player) 
   if winFlag:                     
        self._board.setStringToUpperText(self._player+" WINS!") 
   elif self._numMoves == 9: 
        self._board.setStringToUpperText("DRAW!") 
   # not a win or draw, swap players 
   else: 
       # set player to X or O 
       if self._player == "X": 
          self._player = "O" 
       else: 
          self._player = "X"



TTT Summary
• Basic strategy

• Board: start general, don’t think about game specific details

• TTTBoard: extend generic board with TTT specific features

• Inherit everything, update attributes/methods as needed

• TTTLetter: isolate functionality of a single TTTLetter on board

• Think about what features are necessary/helpful in other classes 

• TTTGame: think through logic conceptually before writing any code

• Translate logic into code carefully, testing along the way



Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the 

game state of Boggle is more complicated 
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual 
methods 

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as 
needed)

• Discuss logic with partner/instructor before writing any code 

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!



The	end!



CS134:  
Lab 9



Lab 9 Overview
• User-defined Types with Inheritance!

• Using the Board class from...class

• Multi-week partners lab (counts as two labs in terms of grade; Lab is 
decomposed into three logical parts)

• Parts 1 & 2 (BoggleLetter & BoggleBoard) due Nov 16/17 
• We will run our tests on these and return automated feedback 

(similar to Lab 4 part 1); you are allowed/encouraged to revise it 
afterwards

• Parts 3 (BoggleGame) (and revised Parts 1 and 2) due Nov 30/
Dec 1



Boggle Strategies
• At a high level, Tic Tac Toe and Boggle have a lot in common, but the 

game state of Boggle is more complicated 
• In Lab 9 you should follow a similar strategy to what we did with TTT

• Don’t forget the bigger picture as you implement individual 
methods 

• Think holistically about how the objects/classes work together

• Isolate functionality and test often (use __str__ to print values as 
needed)

• Discuss logic with partner/instructor before writing any code 

• Worry about common cases first, but don’t forget the “edge” cases
• Come see instructors/TAs for clarification

GOOD LUCK and HAVE FUN!



Working with a Partner
• "Pair Programming" (or programming with a partner) is an Agile 

software development technique from Extreme Programming
• It's used in the real world!
• Produces better solutions than produced individually!
• Spreads knowledge!

• It's good to be able to talk through complex ideas with someone else 
before diving into implementation details

• Benefit from both partners' knowledge of problem-solving & 
debugging



git with a Partner

Repository	or	“repo”

Pair	Programming:	One	person	
"drives",	take	turns	who	uses	keyboard/

mouse

BoggleLetter.py

Discuss	your	design	ideas	with	your	partner!!	
Identify	bugs	&	bug	fixes	together!



git with a Partner

Repository	or	“repo”

Jigsaw	Programming:		
Two	partners,	two	different	Python	files!

BoggleLetter.py

Discuss	your	design	ideas	with	your	partner!!	
Identify	bugs	&	bug	fixes	together!

BoggleBoard.py



git with a Partner

Repository	or	“repo”

Jigsaw	Programming:		
Two	partners,	two	different	Python	files!

BoggleLetter.py

Discuss	your	design	ideas	with	your	partner!!	
Identify	bugs	&	bug	fixes	together!

BoggleBoard.py

If an editor opens up saying 
files were merged:  that's 

okay, just save & exit 
("Ctrl+x" and then "y")



git with a Partner

DO	NOT	WORK	ON	THE	SAME	FILE	AT	
THE	SAME	TIME!

There	will	be	frustration!

And	suffering!

And	Lida	will	probably	have	to	save	you!

DO:	Talk	to	your	partner	a	lot!



Git Reminders
• If machine doesn't have the repo, git clone the repo

• Grab URL from https://evolene.cs.williams.edu/ (or Lida's email)

•  git clone <URL HERE>
• git add/commit/push frequently, as you get work done

• To grab your partner's edits, git pull 

• (if you've already git cloned the repo)

• If you have not git cloned the repo, then git clone

https://evolene.cs.williams.edu/


Git Workflow Reminder
• Starting a work session:

• Always pull most recent version before making any edits (clone if using a new 
machine)

• Middle of a work session:
• Commit changes to all files first (git commit -am "message") commits changes to 

all files already on evolene
• After commit, pull again to get your partner's edits
• If an editor opens up saying files were merged:  that's okay, just save & exit 

("Ctrl+x" and then "y")
• Then push your edits to evolene (can check evolene to make sure it worked)

• Do the above steps (commit, pull, push) frequently 
• Can check status anytime by typing git status 
• Let us know if you face any issues!

Do You Have Any Questions?


