CS |34

li1c Tac Toe

Announcements & Logistics

Lab 8 due today/tomorrow

Questions!

« HW 8 posted, due Nov 4 at |0pm

Do You Have Any Questions?

Last [Ime

- Learned a bit more about classes and special __ (double underscore)
methods

Str__ :print representation of objects

+ __1nit__ :initialize objects

- Began talking about inheritance

Joday's Plan

- Discuss inheritance and object oriented design for Tic Tac Toe

» Think about how to decompose a game into multiple pieces
« Board, TTTBoard, TTTLetters,and TTTGame

- Today we'll start with Board

., @
\,QO
\,OJXO
\:s
CY—

Tic Tac Toe

)| N
'/

8 =% -) \ / o

Implementing lic lac Toe

Suppose we want to implement Tic Tac Toe

Teaser demo...

>>> python3 tttgame.py

X WINS!
X
O | X
O X

RESET EXIT

Decomposition

Let’s try to identify the “layers” of this game

Through abstraction and encapsulation, each
layer can ignore what's happening in the
other layers

What are the layers of Tic Tac Toe!

Decomposition

Let’s try to identify the “layers” of this game

Through abstraction and encapsulation, each layer
can ignore what's happening in the other layers

What are the layers of Tic Tac Toe?

Bottom layer: Basic board w/buttons, text

areas, mouse click detection (not specific to Tic
Tac Toe!)

Lower middle layer: Extend the basic board
with Tic Tac Toe specific features (3x3 grid,
of TTTLetters, initial board state: all letters start
blank)

Upper middle layer: Tic Tac Toe “spaces’ or
“letters” (9 in totall); set text to X or O

- Top layer: Game logic (alternating turns,
checking for valid moves, etc)

Game

TTTLetter
TTTBoard

Board

B3oard class

Let's start at the bottom: Board class

What are basic features of all game boards!

- Think generally...many board-based games have the similar

basic requirements

* (For example, Boggle, TicTacToe,
Scrabble, etc)

Upper text area

Text area

Lower text area: hi!

RESET

EXIT

B3oard class

Let’s start at the bottom: Board class

What are basic features of all game boards!
Text areas: above, below, right of grid
Grid of squares of set size: rows x cols
Reset and Exit buttons
React to mouse clicks (less obvious!)

These are all graphical (GUIl) components

Code for graphics Is a little messy
at times

Lot's of things to specify: color, size,
location on screen, etc

Upper text area

Text area

Lower text area: hi!

RESET

EXIT

Graphics Package for Board

. . VWe are going to use a simple graphics
>>> from graphics import package to implement our game board

>>> # takes title and size of window

>>> win = GraphWin("Name", 400, 400) 4,00 pixels

Create a window with title “Name’" and 4 O Name

size 400x400 (measured in pixels)

400 pixels

A pixel is one of the small dots or
squares that make up an image on a
computer screen. v

Graphics Package for Board

. . We are going to use a simple graphics
>>> from graphics import * ———_ package to implement our game board

>>> # takes title and size of window

>>> win = GraphWin("Name", 400, 400) 4,00 pixels
< >
Create a window with title “Name” and 4 © Name
ize 400x400 d in pixel
size 400x400 (measured in pixels) (0,0)

(Also a Pixel)

400 pixels

Window coordinates (X, y)

A pixel is one of the small dots or
squares that make up an image on a

computer screen. v (4@@ > 4@@)

Graphics Package for Board

>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)

>>> # create circle w center at pt and radius 100
>>> c = Circle(pt, 100)

>>> # draw the circle on the window
>>> c.draw(win)
Circle(Po1nt(200.0, 200.0), 100)

Graphics Package for

B3oard

>>> # create point obj at x,y coordinate in window

>>> pt = Point(200, 200)

>>> # create circle w center at pt and radius 100

>>> ¢ = Circle(pt, 100)

>>> # draw the circle on the window

>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

We can draw other shapes as well.

We'll want to draw Rectangles in our
Board class.

Window coordinates (X, y)

(0,0)

(0,400)

(200,200)
®

—~

(400,0)

(400, 4¢

Graphics Package for Board

>>> # set color to blue

>>> c.setFil1("blue™)

>>> # Pause to view result
>>> Win.getMouse()
Point(76.0, 322.0)

>>> # close window when done

>>> win.close()
Detecting “events’ like mouse clicks are an
important part of a graphical program.

win.getMouse() is a blocking method call
that “blocks” or waits until a click is detected.

Board Class

E) 8 B e\

Board class: Getting Started

ylnset. . .

Attributes:

_win: graphical window on which we will draw our board
_xInset: avoids drawing in corner of window

_yInset: avoids drawing in corner of window

_rows: number of rows in grid of squares

_cols: number of columns in grid of squares

_size: edge size of each square

xlnset«

- (We will add a few more attributes later)
- We need to draw the grid, text areas, and buttons

. M|ght need some helper methods to orgamze our code

Lets start by drawmg the grld on our board

Board Class:

NIt

and getters

class Board:

_win: graphical window on which we will draw our board
_xInset: avoids drawing in corner of window

_yInset: avoids drawing in corner of window

_rows: number of rows in grid of squares

_cols: number of columns in grid of squares

_size: edge size of each square

_slots__ = ['_xInset', '_yInset', '_rows', '_cols', '_size', \
' win', '_exitButton', '_resetButton', \
' _textArea', '_lowerWord', '_upperWord']

def __init_ (self, win, xInset=50, yInset=50, rows=3, cols=3, size=50):
update class attributes
self._xInset = xInset; self._yInset = yInset
self._rows rows; self._cols = cols
self._size = size
self._win = win
self.drawBoard()

Notice the default values

getter methods for attributes
def getWin(self):
return self._win

def getXInset(self):
return self._xInset

. ryInsetmm

def getYInset(self):
return self._yInset

xlnset +>

def getRows(self):
return self._rows

def getCols(self):
return self._cols

def getSize(self):
return self._size

def getBoard(self):
return self

3oard class: Drawing the grid

def _ drawGrid(self):
"""Creates a row x col grid, filled with empty squares"""
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xInset + self._size x X,
self._yInset + self._size * y)
create second point
p2 = Point(self._xInset + self._size x (x + 1),
self._yInset + self._size *x (y + 1))
create rectangle and add to graphical window
self._makeRect(pl, p2)

def _makeRect(self, pointl, point2, fillcolor="white", text=""):
rect = Rectangle(pointl, point2, fillcolor)
rect.draw(self._win)
text = Text(rect.getCenter(), text)
text.setTextColor("black")

text.draw(self._win) —__ We always need a window (_win) on which to draw.

return rect

3oard class: Drawing the grid

def _ drawGrid(self):
"""Creates a row x col grid, filled with empty squares"""
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xInset + self._size x X,
self._yInset + self._size x y)
create second point
p2 = Point(self._xInset + self._size x (x + 1),
self._yInset + self._size x (y + 1))
create rectangle and add to graphical window
self._makeRect(pl, p2)

X=0, y=0:
pl: 1
xInset + (size x x) = xInset P .
yInset + (size x y) = ylInset —v
p2: pz////

xInset + size
yInset + size

xInset + (size *x (x+1))
yInset + (size *x (y+1))

3oard class: Drawing the grid

def _ drawGrid(self):
"""Creates a row x col grid, filled with empty squares"""
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xInset + self._size x X,
self._yInset + self._size x y)
create second point
p2 = Point(self._xInset + self._size x (x + 1),
self._yInset + self._size x (y + 1))
create rectangle and add to graphical window
self._makeRect(pl, p2)

x=0, y=1:
pl:
xInset + (size x x) = xInset
yInset + (size % y) = yInset + size p1 '!
p2:

xInset + size ,///

xInset + (size x (x+1)) 5
yInset + 2 *x size P

yInset + (size x (y+1))

3oard class: Drawing the grid

def _ drawGrid(self):
"""Creates a row x col grid, filled with empty squares"""
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xInset + self._size x X,
self._yInset + self._size x y)
create second point
p2 = Point(self._xInset + self._size * (x + 1),
self._yInset + self._size *x (y + 1))
create rectangle and add to graphical window
self._makeRect(pl, p2)

X=0, y=2:
pl:
xInset + (size x x) = xInset
yInset + (size x y) = yInset + 2 % size

p2: p1——
xInset + (size *x (x+1)) xInset + size
yInset + (size x (y+1)) = yInset + 3 x size D2

3oard class: Drawing the grid

def _ drawGrid(self):
"""Creates a row x col grid, filled with empty squares"""
for x in range(self._cols):
for y in range(self._rows):
create first point
pl = Point(self._xInset + self._size x X,
self._yInset + self._size x y)
create second point
p2 = Point(self._xInset + self._size x (x + 1),
self._yInset + self._size x (y + 1))
create rectangle and add to graphical window
self._makeRect(pl, p2)

x=1, y=0:
pl: PL ——
xInset + (size *x x) = xInset + size !
yInset + (size * y) = ylInset Py
p2: p2

xInset + 2 % size
yInset + size

xInset + (size x (x+1))
yInset + (size x (y+1))

And so on...

Board class: Getting Started

Tic Tac Toe

- Attributes: el

_win: graphical window on which we will draw our board right
_xInset: avoids drawing in corner of window

_yInset: avoids drawing in corner of window

_rows: number of rows in grid of squares

_cols: number of columns in grid of squares

_size: edge size of each square

+ attributes for the text areas
« (We will add a few more attributes later)

lower

* We need to draw the grid, text areas, and buttons

2

. M|ght need some helper methods to orgamze our code

‘Novv Iets draw the text areas (vve need 3')

- Text areas are just called Text objects in our graphics package

- We can customize the font size, color, style, and size and call 3
“setText"to add text

Board class: Drawing the Text Areas

- We'll add attributes for the text areas:
_textArea, _lowerWord, _upperWord

upper
def __makeTextArea(self, point, fontsize=18, color="black", text=""):

textArea = Text(point, text) i
textArea.setSize(fontsize)
textArea.setTextColor(color)
textArea.setStyle("normal")
textArea.draw(self._win)
return textArea

lower

def __ drawTextAreas(self):

""“"Draw the text area to the right/lower/upper side of main grid"""

draw main text area (right of grid)

self._textArea = self.__makeTextArea(Point(self._xInset * self._rows + self._size x 2,
self._yInset + 50), 14)

#draw the text area below grid

self._lowerWord = self.__makeTextArea(Point (160, 275))

#draw the text area above grid

self._upperWord = self.__makeTextArea(Point (160, 25), color="red")

Board class: Getting Started

Tic Tac Toe

Attributes:

_win: graphical window on which we will draw our board
_xInset: avoids drawing in corner of window

_yInset: avoids drawing in corner of window

_rows: number of rows in grid of squares

_cols: number of columns in grid of squares

_size: edge size of each square

+

+

_textArea, _upperWord, _lowerWord
_resetButton & _exitButton
- (We will add a few more attributes later)

RESET EXIT

- We need to draw the grid, text areas, and buttons
. M|ght need some helper methods to orgamze our code

3 'F|I|yqlet‘sdraw:te buttons" o .'

. Buttons are Just more rectangles 4

Board class: Drawing the Buttons & Board

def

def

def

_makeRect(self, pointl, point2, fillcolor="white", text=""):

rect = Rectangle(pointl, point2, fillcolor)
rect.draw(self._win)

text = Text(rect.getCenter(), text)
text.setTextColor("black")
text.draw(self._win)

return rect

__drawButtons(self):

"""Add buttons to board"""

pl = Point(50, 300); p2 = Point(130, 350)
self._resetButton = self._makeRect(pl, p2, text="RESET")
p3 = Point(170, 300); p4 = Point(250, 350)
self._exitButton = self._makeRect(p3, p4, text="EXIT")

drawBoard(self):

this creates a row x col grid, filled with squares, including buttons
self._win.setBackground("white smoke")

self. drawGrid()

self. _drawTextAreas()

self. _drawButtons()

Putting 1t all together

Upper text area

Text area

Lower text area:

RESET EXIT

Helper Methods

= <4 X;o' 0 \ g‘:mb‘o

Helper Methods

Now that we have a board with a grid, buttons, and text areas, it
would be useful to define some methods for interacting with these
objects

Helpful methods?

Helper Methods

Now that we have a board with a grid, buttons, and text areas, it
would be useful to define some methods for interacting with these
objects

Helpful methods?
Get grid coordinate of mouse click
Determine if click was in grid, reset, or exit buttons

Set text to one of 3 text areas

Note that none of this is specific to Tic Tac Toe (yet)!

Always good to start general and then get more specific

Helper
Methods

>>> pydoc3 board

Public methods!

class Board(builtins.object)

Board(win, xInset=50, yInset=50, rows=3, cols=3, size=50)
Methods defined here:

__init_ (self, win, xInset=50, yInset=50, rows=3, cols=3, size=50)
Initialize self. See help(type(self)) for accurate signature.

drawBoard(self)
Create the board with the grid, text areas, and buttons

getPosition(self, point)
Converts a window location (Point) to a grid position (tuple).
Note: Grid positions are always returned as col, row.

getStringFromLowerText(self)
Get text from text area below grid.

getStringFromTextArea(self)
Get text from text area to right of grid.

getStringFromUpperText(self)
Get text from text area above grid.

inExit(self, point)
Returns true if point is inside exit button (rectangle)

inGrid(self, point)
Returns True if a Point (point) exists inside the grid of squares.

inReset(self, point)
Returns true if point is inside exit button (rectangle)

setStringToLowerText(self, text)
Set text to text area below grid. Overwrites existing text.

setStringToTextArea(self, text)
Sets text to text area to right of grid. Overwrites existing text.

setStringToUpperText(self, text)
Set text to text area above grid. Overwrites existing text.

Working with Mouse Clicks

win.getMouse() returns a Point object, which has an X and y
coordinate (tuple) determined by the screen coordinate

VWe can use helper methods (with simple calculations) to test which
orid square or button the click occurred in

This will be useful in our next step!

(Run python3 board.py in Terminal)

Soard Class: Bigger Picture

- Tic Tac Toe Is not the only text-based board game

+ Our Board class that can be used for other games as well, such as Boggle!
(Lab 9)

» Summary of our basic Board class implementation:

+ Create a grid of a certain size (e.g., 3 by 3 for Tic Tac Toe)
- Define attributes and getter methods to access rows, cols, size, etc

* Provide helper methods to recognize and interpret a mouse click on
the board

* Provide other basic features (and methods for manipulating them)
such as text areas for indicating whose turn it is, printing who wins, etc

- Through the power of inheritance we can use the same board class for
TicTacToe and Boggle!

TTTBoard Class

TTT, Board
Board

E) 8 B e\

Moving up: I T T Boarad

Although our Board class provides a lot of useful functionality, there
are some Tic Tac Toe specific features we need to support

VWe can do this by inheriting from the Board class

VWe can take advantage of all of the methods and attributes defined
in Board and add any (specific) extras we may need for TTT

What extras (attributes and/or methods) might be useful?

Game

TTTLetter
TTTBoard

Board

Moving up: I T T Boarad

Although our Board class provides a lot of useful functionality, there
are some Tic Tac Toe specific features we need to support

VWe can do this by inheriting from the Board class

VWe can take advantage of all of the methods and attributes defined
in Board and add any (specific) extras we may need for TTT

What extras (attributes and/or methods) might be useful?

Populate grid with TTTLetters

o Game
* Check individual TTTLetters for X or O
TTTLetter
- Setting individual TTTLetters to X or O
TTTBoard

- Check for win (how?)

Board

More next tme!

H D @ = \ /.
T IEEEINT

