
CS134:
Tic Tac Toe

Announcements & Logistics
• Lab 8 due today/tomorrow

• Questions?

• HW 8 posted, due Nov 14 at 10pm

Do You Have Any Questions?

Last Time
• Learned a bit more about classes and special __ (double underscore)

methods

• __str__ : print representation of objects

• __init__ : initialize objects

• Began talking about inheritance

Today’s Plan
• Discuss inheritance and object oriented design for Tic Tac Toe

• Think about how to decompose a game into multiple pieces

• Board, TTTBoard, TTTLetters, and TTTGame

• Today we’ll start with Board

Tic Tac Toe

Implementing Tic Tac Toe
• Suppose we want to implement Tic Tac Toe
• Teaser demo…

>>> python3 tttgame.py

Decomposition
• Let’s try to identify the “layers” of this game
• Through abstraction and encapsulation, each

layer can ignore what’s happening in the
other layers

• What are the layers of Tic Tac Toe?

Decomposition
• Let’s try to identify the “layers” of this game
• Through abstraction and encapsulation, each layer

can ignore what’s happening in the other layers
• What are the layers of Tic Tac Toe?

• Bottom layer : Basic board w/buttons, text
areas, mouse click detection (not specific to Tic
Tac Toe!)

• Lower middle layer : Extend the basic board
with Tic Tac Toe specific features (3x3 grid,
of TTTLetters, initial board state: all letters start
blank)

• Upper middle layer : Tic Tac Toe “spaces” or
“letters” (9 in total!); set text to X or O

• Top layer : Game logic (alternating turns,
checking for valid moves, etc)

Board

TTTBoard
TTTLetter

Game

Board class
• Let’s start at the bottom: Board class
• What are basic features of all game boards?

• Think generally…many board-based games have the similar
basic requirements

• (For example, Boggle, TicTacToe,
Scrabble, etc)

Board class
• Let’s start at the bottom: Board class
• What are basic features of all game boards?

• Text areas: above, below, right of grid
• Grid of squares of set size: rows x cols
• Reset and Exit buttons
• React to mouse clicks (less obvious!)

• These are all graphical (GUI) components
• Code for graphics is a little messy

at times
• Lot’s of things to specify: color, size,

location on screen, etc

>>> from graphics import *
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400)

Graphics Package for Board

A pixel is one of the small dots or
squares that make up an image on a

computer screen.

400	pixels

400	pixels

Create a window with title “Name” and
size 400x400 (measured in pixels)

We are going to use a simple graphics
package to implement our game board

>>> from graphics import *
>>> # takes title and size of window
>>> win = GraphWin("Name", 400, 400)

Graphics Package for Board

A pixel is one of the small dots or
squares that make up an image on a

computer screen.

400	pixels

400	pixels

Create a window with title “Name” and
size 400x400 (measured in pixels)

We are going to use a simple graphics
package to implement our game board

(Also a Pixel)

(0,0)

(400, 400)

Window coordinates (x, y)

Graphics Package for Board
>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)
>>> # create circle w center at pt and radius 100
>>> c = Circle(pt, 100)
>>> # draw the circle on the window
>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

>>> # create point obj at x,y coordinate in window
>>> pt = Point(200, 200)
>>> # create circle w center at pt and radius 100
>>> c = Circle(pt, 100)
>>> # draw the circle on the window
>>> c.draw(win)
Circle(Point(200.0, 200.0), 100)

Graphics Package for Board

(0,0)

(0,400) (400,400)

(400,0)

(200,200)We can draw other shapes as well.

We’ll want to draw Rectangles in our
Board class.

Window coordinates (x, y)

>>> # set color to blue
>>> c.setFill("blue")
>>> # Pause to view result
>>> win.getMouse()
Point(76.0, 322.0)
>>> # close window when done
>>> win.close()

Graphics Package for Board

Detecting “events” like mouse clicks are an
important part of a graphical program.

win.getMouse() is a blocking method call
that “blocks” or waits until a click is detected.

Board Class

Board

Board class: Getting Started
• Attributes:

• (We will add a few more attributes later)
• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Let’s start by drawing the grid on our board

yInset

xInset
 # _win: graphical window on which we will draw our board
 # _xInset: avoids drawing in corner of window
 # _yInset: avoids drawing in corner of window
 # _rows: number of rows in grid of squares
 # _cols: number of columns in grid of squares
 # _size: edge size of each square

Board Class:
__init__ and getters

yInset

xInset

Notice the default values

Board class: Drawing the grid

We always need a window (_win) on which to draw.

Board class: Drawing the grid

x=0, y=0:
p1:
xInset + (size * x) = xInset
yInset + (size * y) = yInset
p2:
xInset + (size * (x+1)) = xInset + size
yInset + (size * (y+1)) = yInset + size

p2

p1

Board class: Drawing the grid

x=0, y=1:
p1:
xInset + (size * x) = xInset
yInset + (size * y) = yInset + size
p2:
xInset + (size * (x+1)) = xInset + size
yInset + (size * (y+1)) = yInset + 2 * size p2

p1

Board class: Drawing the grid

x=0, y=2:
p1:
xInset + (size * x) = xInset
yInset + (size * y) = yInset + 2 * size
p2:
xInset + (size * (x+1)) = xInset + size
yInset + (size * (y+1)) = yInset + 3 * size p2

p1

Board class: Drawing the grid

x=1, y=0:
p1:
xInset + (size * x) = xInset + size
yInset + (size * y) = yInset
p2:
xInset + (size * (x+1)) = xInset + 2 * size
yInset + (size * (y+1)) = yInset + size

And so on…

p2

p1

Board class: Getting Started
• Attributes:

• (We will add a few more attributes later)

• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Now let’s draw the text areas (we need 3!)
• Text areas are just called Text objects in our graphics package
• We can customize the font size, color, style, and size and call

“setText” to add text

 # _win: graphical window on which we will draw our board
 # _xInset: avoids drawing in corner of window
 # _yInset: avoids drawing in corner of window
 # _rows: number of rows in grid of squares
 # _cols: number of columns in grid of squares
 # _size: edge size of each square

+ attributes for the text areas

• We’ll add attributes for the text areas:
_textArea, _lowerWord, _upperWord

Board class: Drawing the Text Areas

Board class: Getting Started
• Attributes:

• (We will add a few more attributes later)
• We need to draw the grid, text areas, and buttons

• Might need some helper methods to organize our code

• Finally, let’s draw the buttons!
• Buttons are just more rectangles…

 # _win: graphical window on which we will draw our board
 # _xInset: avoids drawing in corner of window
 # _yInset: avoids drawing in corner of window
 # _rows: number of rows in grid of squares
 # _cols: number of columns in grid of squares
 # _size: edge size of each square

+ _resetButton & _exitButton
 + _textArea, _upperWord, _lowerWord

Board class: Drawing the Buttons & Board

Putting it all together

Helper Methods

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it

would be useful to define some methods for interacting with these
objects

• Helpful methods?

Helper Methods
• Now that we have a board with a grid, buttons, and text areas, it

would be useful to define some methods for interacting with these
objects

• Helpful methods?
• Get grid coordinate of mouse click
• Determine if click was in grid, reset, or exit buttons
• Set text to one of 3 text areas
• …

• Note that none of this is specific to Tic Tac Toe (yet)!
• Always good to start general and then get more specific

Helper
Methods

>>> pydoc3 board

Public methods!

Working with Mouse Clicks
• win.getMouse() returns a Point object, which has an x and y

coordinate (tuple) determined by the screen coordinate
• We can use helper methods (with simple calculations) to test which

grid square or button the click occurred in
• This will be useful in our next step!
• (Run python3 board.py in Terminal)

Board Class: Bigger Picture
• Tic Tac Toe is not the only text-based board game
• Our Board class that can be used for other games as well, such as Boggle!

(Lab 9)
• Summary of our basic Board class implementation:

• Create a grid of a certain size (e.g., 3 by 3 for Tic Tac Toe)
• Define attributes and getter methods to access rows, cols, size, etc
• Provide helper methods to recognize and interpret a mouse click on

the board
• Provide other basic features (and methods for manipulating them)

such as text areas for indicating whose turn it is, printing who wins, etc
• Through the power of inheritance we can use the same board class for

TicTacToe and Boggle!

TTTBoard Class

Board
TTT Board

Moving up: TTTBoard
• Although our Board class provides a lot of useful functionality, there

are some Tic Tac Toe specific features we need to support
• We can do this by inheriting from the Board class
• We can take advantage of all of the methods and attributes defined

in Board and add any (specific) extras we may need for TTT

• What extras (attributes and/or methods) might be useful?

Board

TTTBoard
TTTLetter

Game

Moving up: TTTBoard

Board

TTTBoard
TTTLetter

Game

• Although our Board class provides a lot of useful functionality, there
are some Tic Tac Toe specific features we need to support

• We can do this by inheriting from the Board class
• We can take advantage of all of the methods and attributes defined

in Board and add any (specific) extras we may need for TTT

• What extras (attributes and/or methods) might be useful?

• Populate grid with TTTLetters

• Check individual TTTLetters for X or O

• Setting individual TTTLetters to X or O

• Check for win (how?)

More next time!

The	end!

