
CS134:
Classes, Objects, and Inheritance

Announcements & Logistics
• Lab 8 is a partner lab: focuses on using classes

• Must attend one lab session with your partner

• Mon lab due on Wed, Tue lab due on Thur
• Make sure both partners are typing/participating

• HW 7 due tonight (on Glow)

Do You Have Any Questions?

Last Time
• Built the Book class to represents book objects

• Learned about private, protected, public attributes and methods (indicate
scope using underscores in Python)

• Explored accessor (getter) and mutator (setter) methods in Python

• Talked about __init__ (aka constructor) and __str__ methods

Today’s Plan
• Look at another simple example involving classes and methods

• Begin talking about inheritance

 
 
 
 
 

• Special method __str__ is automatically called when we ask to print
a class object in Python

• __str__ must always return a string

• We can customize how the object is printed by writing a custom
__str__ method for our class

• Very useful for debugging!

>>> test = Book("testing")

>>> print(test)

<__main__.Book object at 0x105eecca0>

Print Representation of an Object

By default, if we print an object,
the output is not helpful

class Book():

__slots__ = ["_title"]

def __init__(self, title):

self._title = title

__str__ for Book class
• What is a useful string representation of a Book?

• Something that combines the attributes in a meaningful way
• The format() string method comes in handy here

• Now when we ask to print a specific instance of a Book, we get
something useful

 # __str__ is used to generate a meaningful string representation for Book objects

 # __str__ is automatically called when we ask to print() a Book object

 def __str__(self):

 return "'{}', by {}, in {}".format(self._title, self._author, self._year)

>>> print(emma)

'Emma', by Jane Austen, in 1815

Special Methods

Special methods and attributes
• We’ve seen several “special” methods and attributes in Python:

• __name__ special module attribute

• __main__ name attribute of scripts

• __slots__ list for attributes

• __init__ method

• __str__ method

Other Special Methods
• There are many other “special” methods in Python.

• __len__(self): len(x)

• __contains__(self, item): item in x

• __eq__ (self, other):

• __lt__ (self, other):

• __gt__ (self, other):

• __add__(self, other) :

• __sub__(self, other):

• __mul__(self, other):

• __truediv__(self, other):

• __pow__(self, other):

• There are others!

We’ll come back
to these in a few

weeks!

x == y
x < y
x > y
x + y
x - y
x * y
 x / y
x ** y

Another Class Example

Another Example: Name Class
• Names of people have certain attributes

• Almost everyone has a first and last name

• Some people have a middle name

• We can create name objects by defining a class to represent these
attributes

• Then we can define methods, e.g., getting initials of people's names, etc
• Let's practice some of the concepts using this class

• __str__: how do we want the names to be printed?
• initials: can we define a method that returns the initials of

people's names?

Example: Name Class
class Name:

 """Class to represent a person's name."""

 __slots__ = ['_f', '_m', '_l']

 def __init__(self, first, last, middle=''):

 self._f = first

 self._m = middle

 self._l = last

 def __str__(self):

 # if the person has a middle name

 if len(self._m) > 0:

 return '{}. {}. {}'.format(self._f[0], self._m[0], self._l)

 else:

 return '{}. {}'.format(self._f[0], self._l)

>>> n1 = Name("Jeannie", "Albrecht", "Raye")

>>> n2 = Name("Iris", "Howley")

>>> print(n1)

J. R. Albrecht

>>> print(n2)

I. Howley

intials() method
• Suppose we want to write a method that returns the person’s initials

as a string?
• How would we do that?

Example: Name Class
class Name:

 """Class to represent a person's name."""

 __slots__ = ['_f', '_m', '_l']

 def __init__(self, first, last, middle=''):

 self._f = first

 self._m = middle

 self._l = last

 def initials(self):

 if len(self._m) > 0:

 return '{}. {}. {}.'.format(self._f[0], self._m[0], self._l[0]).upper()

 else:

 return '{}. {}.'.format(self._f[0], self._l[0]).upper()

 def __str__(self):

 # if the person has a middle name

 if len(self._m) > 0:

 return '{}. {}. {}'.format(self._f[0], self._m[0], self._l)

 else:

 return '{}. {}'.format(self._f[0], self._l)

>>> n1 = Name('Jeannie', 'Albrecht', 'Raye')

>>> n1.initials()

'J. R. A.'

>>> n2 = Name('Lida', 'Doret')

>>> n2.initials()

'L. D.'

Inheritance Example

Introduction to Inheritance
• Inheritance is the capability of one class to derive or inherit the

properties from another class
• The benefits of inheritance are:

• Often represents real-world relationships well
• Provides reusability of code, so we don’t have to write the same

code again and again
• Allows us to add more features to a class without modifying it

• Inheritance is transitive in nature, which means that if class B inherits
from class A, then all the subclasses of B would also automatically inherit
from class A

• When a class inherits from another class, all methods and attributes are
accessible to subclass, except private attributes (indicated with __)

• Suppose we have a base (or parent) class Fish
• Fish defines several methods that are common to all fish:

• eat(), swim()

• Fish also defines several attributes with default values:

• _length, _weight, _lifespan

Inheritance Example

Inheritance Example
• All fish have some features in common

• But not all fish are the same!

• Each Fish instance will specify different values for attributes
(_length, _weight, _lifespan)

• Some fish may still need extra functionality!

Inheritance Example
• For example, Sharks might need an attack() method
• Pufferfish might need a puff() method
• We might even want to override an existing method with a different

(more specialized) implementation
• Inheritance allows for all of this!

_name

Alex
_name _name

StanJeannie
getName() getName() getName()

class Person

And Stan is Staff

And Jeannie is Faculty

But Alex is actually a Student

_major

Math
getMajor()

class Person

class Student

_fulltime

False
getStatus()

class Staff

_name

getName()

_dept

CSCI
getDept()

class Faculty

Different subclasses can have
different attributes, methods

_major

Math
getMajor()

class Person

class Student

_fulltime

False
getStatus()

class Staff

_name

getName()

_dept

CSCI
getDept()

class Faculty

Different subclasses can have
different attributes, methods

_major

Math
getMajor()

class Person

class Student

_fulltime

False
getStatus()

class Staff

_name

getName()

_dept

CSCI
getDept()

class Faculty

Different subclasses can have
different attributes, methods

_major

Math
getMajor()

class Person

class Student

_fulltime

False
getStatus()

class Staff

_name

getName()

_dept

CSCI
getDept()

class Faculty

We want these subclasses to
inherit attributes, methods

from their parent class

_name

Alex

getName()

_name

Jeannie

getName()

_name

Stan

getName()

Inheritance

Inheritance
• When defining super/parent classes, think about the common features and

methods that all subclasses will have
• In subclasses, inherit as much as possible from parent class, and add and/or

override attributes and methods as necessary
• Consider an simple example:

• Person class: defines common attributes for all people on campus

• Student subclass: inherits from Person and adds additional attributes
for student’s major and year

• Faculty subclass: inherits from Person and adds additional attributes
for department and office

• Staff subclass: inherits from Person and adds additional attributes for
type/status of employee (full-time, part-time)

Person Class
class Person:

 __slots__ = ['_name']

 def __init__(self, name):

 self._name = name

 def getName(self):

 return self._name

 def __str__(self):

 return self._name

_name

Person

__init__(n)

getName(): str

__str__(): str

_year

_major

__init__()

getYear(): str

getMajor(): str

setMajor()

__str__(): str

Student
_dept

_office

__init__()

getDept(): str

getOffice(): str

Faculty Staff
_fulltime

__init__()

getStatus(): str

class Student(Person):

 __slots__ = ['_year', '_major']

 def __init__(self, name, year, major):

 # call __init__ of Person (the super class)

 super().__init__(name)

 self._year = year

 self._major = major

 def getYear(self):

 return self._year

 def getMajor(self):

 return self._major

 def setMajor(self, major):

 self._major = major

 def __str__(self):

 return '{}, {}, {}'.format(self._name, self._major, self._year)

Student Class
Our Student class inherits

from Person
Notice this does not include the
inherited attribute _name since

that is already provided in Person

This calls the __init__
method of Person

_name

Person

__init__(n)

getName(): str

__str__(): str

_year

_major

__init__(n, y, m)

getYear(): str

getMajor(): str

setMajor(m)

__str__(): str

Student
_dept

_office

__init__()

getDept(): str

getOffice(): str

Faculty Staff
_fulltime

__init__()

getStatus(): str

Using the Student Class
>>> alex = Student("Alex", 2026, "Math")

>>> # inherited from Person

>>> alex.getName()

'Alex'

>>> # defined in Student

>>> alex.getMajor()

'Math'

>>> alex.setMajor("CS")

>>> alex.getMajor()

‘CS'

>>> print(alex)

‘Alex, CS, 2026’ This calls __str__ of the Student class

Faculty Class

class Faculty(Person):

 __slots__ = ['_dept', '_office']

 def __init__(self, name, dept, office):

 # call __init__ of Person (the super class)

 super().__init__(name)

 self._dept = dept

 self._office = office

 def getDept(self):

 return self._dept

 def getOffice(self):

 return self._office

Faculty inherits from Person Does not include the inherited
attribute _name from Person

Calls the __init__
method of Person

_dept

_office

__init__(n, d, o)

getDept(): str

getOffice(): str

Faculty Staff
_fulltime

__init__()

getStatus(): str

_year

_major

__init__(n, y, m)

getYear(): str

getMajor(): str

setMajor(m)

__str__(): str

Student

_name

Person

__init__(n)

getName(): str

__str__(): str

Using the Faculty Class
>>> jeannie = Faculty("Jeannie","CS","TCL 305")

>>> # inherited from Person

>>> jeannie.getName()

'Jeannie'

>>> # defined in Faculty

>>> jeannie.getDept()

'CS'

>>> print(jeannie)

Jeannie

>>> jeannie.getMajor()

AttributeError: 'Faculty' object has no
attribute 'getMajor' getMajor is a method of Student, not

Person, and it is not defined in Faculty.
This will not work.

This calls __str__ of the Person class

Staff Class

class Staff(Person):

 # fulltime is a Boolean

 __slots__ = ['_fulltime']

 def __init__(self, name, fulltime):

 # call __init__ of super class

 super().__init__(name)

 self._fulltime = fulltime

 def getStatus(self):

 if self._fulltime:

 return "fulltime"

 return "partime"

Notice that getter methods
can do more than just return

an attribute directly

Staff
_fulltime

__init__(n, f)

getStatus(): str

_dept

_office

__init__(n, d, o)

getDept(): str

getOffice(): str

Faculty
_year

_major

__init__(n, y, m)

getYear(): str

getMajor(): str

setMajor(m)

__str__(): str

Student

_name

Person

__init__(n)

getName(): str

__str__(): str

Using the Staff Class
>>> stan = Staff("Stan", False)

>>> print(stan)

Stan

>>> stan.getStatus()

'parttime'

This calls __str__ of the Person class

Summary
• Inheritance is a very useful feature of OOP
• Supports code reusability
• One superclass can be used for any number of subclasses in a

hierarchy
• Can change the parent class without changing the subclasses
• More next time!

The	end!

CS134:  
Lab 8

Lab 8 Overview
• User-defined Types!

• But not inheritance
• Review Lecture Materials from Wednesday & Friday!

