CS |34
Classes & Objects 2

H D @ = N
o8 PRIV Sg

Announcements & Logistics

Lab 8 is going to be a partner lab

Must attend one lab session together

Mon lab due on Wed, Tue lab due on Thur
Lab 6 graded feedback: coming soon (sorry for the delay)
HW 7 due Mon |10 pm (fewer questions this week)

Do You Have Any Questions?

Last [Ime

* Introduced the big idea of object oriented programming (OOP)
* Everything in Python Is an object and has a type!

* We can create classes to define our own types
* Learned how to define and call methods on objects of a class
Methods facilitate abstraction: hide unnecessary details

Discussed using the se LT parameter in methods of a class (self isaa
reference to the calling instance)

* Quick aside: functions versus methods’

Functions are not associated with a specific class

Methods are associated with a specific class and are invoked on instances
of the class (using dot notation)

Joday's Plan

Implement a simple Book class and learn about the following:
» Declaring data attributes of objects using __Slots__
» Learning about scope and naming conventions in Python

+ Using the __1n1t__() method to initialize objects with their
attribute values

- Defining accessor and mutator methods to interact with attributes
* Implementing and invoking methods in general
* Implementing __str__() method to provide meaningful print

1
@
xo?xo
\' <P
O ——

statements for custom objects

Defining a Class

E) 8 B e\

Recap: Defining a Class

Key features of a class:
- Attributes that describe instance-specific data
Methods that act on those attributes

When defining a new class (aka an object blueprint), we identify what
attributes are required and what actions will be performed

For example, suppose we want to define a new Book class
- Attributes?
- Title, author, publication year, genre, ...

Methods!
- sameAuthorAs(), yearssSincePub(), ...

Recap: Attributes

- Objects have state which is typically held in attributes

« For our Book class, these include the book’s title, author, and
publication year

- Every Book instance has different attribute values!
* In Python, we declare attributes using __slots__

+ __sSlots__ is alist of strings that stores the names of all attributes in
our class (only names of attributes are stored, not the values)

+ __Slots__ is typically defined at the top of our class (before method
definitions)

Declaring Attributes In __slots__

class Book:

"""This class represents a book""" “ author”,
“ title”, and
“ year” are
__slots__ = ["_author", "_title", "_year"] Protected
attributes of
the Book
class

declare Book attributes

indented body of class definition

Notice the use of _

Scope & Naming Conventions in Python

* Double leading underscore (__) in name (strictly private):e.g. __value
» “Invisible” from outside of the class
- Strong “you cannot touch this” policy (which is enforced)
* Single leading underscore (_) in name (private/protected): e.g. _value
+ (Can be accessed from outside, but really shouldn't
“Don’t touch this (unless you are a subclass)” policy
* Most attributes in CS134 should start with a single underscore
* No leading underscore (public):e.s. value
» (Can be freely used outside class

 These conventions apply to methods names and attributes

Attribute Naming Conventions

class TestingAttributes():
__slots._ = ['_wval', ' val', 'val'l

def init (self):

self.__val = "I am strictly private."
self._val = "I am private but accessible from outside."
self.val = "I am public."

>>> a = TestingAttributes()

>>> a.__val

AttributeError: 'TestingAttributes' object has no attribute '__val'
>>> d._val

'"T am private but accessible from outside.'

>>> a.val . : : ,
Note: Although we can access attributes directly using
dot notation, it’s bad practice. We should always use

methods to manipulate attributes. More on this later.

'"T am public.'

Initializing a Class: __init__

* How do we assign values to the attributes in __slots__?

- Attributes should be assigned inrtial values when creating new instances
* We can achieve this using the special __1n1t__ method in Python
 The initializer method, like a constructor in Java

* The __1n1t__ method is run automatically anytime a new instance of a
class is created

class TestInit:
""" This class will test when __init__ 1is called"""

def __init__(self):
print("__init__ 1s called")

>>> 0bj = TestInit()

__1nit__ 1s called

Book class: __1hit__

- The __1n1t__ method should set values for attributes in __slots__

» Values are often provided as parameters to __1nit__

class Book:

""This class represents a book with attributes title, author, and year

__slots__ = ["_title", "_author", "_year"]

def __init__(self, bookTitle, bookAuthor, bookYear):
self._title = bookTitle
self._author = bookAuthor
self._year = bookYear

When referring to
class attributes, we use

self.{attribute name}.

>>>

>>> pp = Book("Pride and Prejudice", "Jane Austen", 1813)

>>> emma = Book("Emma", "Jane Austen", 1815)

>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)

>>> ps._title Once again, it is better to use a method to access
'Parable of the Sower' attributes. We’'ll fix this soon!

Class Methods

= <y @ - \ /R

Default Argument Values

VWe can provide default argument values in method and function definitions

class Book:

""This class represents a book with attributes title, author, and year

__sSlots__ = ["_title", "_author", "_year"]

def __init__(self, bookTitle=""', bookAuthor="'"', bookYear=0):
self._title = bookTitle
self._author = bookAuthor

self._year = bookYear

If we create a Book and don't provide values for the arguments in
__1n1t__, the values are set to be the default values (""" and O in this case)

>>> emptyBook = Book()
>>> emptyBook._title

L |

Methods and Data Abstraction

- Ideally, we should not allow direct access to the object’s attributes:
>>>

>>> ps = Book("Parable of the Sower", "Octavia Butler™, 1993)
>>> ps._title

"Parable of the Sower'

- Instead we control access to attributes through accessor and mutator
methods and avoid accessing the attributes directly

- Accessor methods: provide “read-only” access to the object’s
attributes (“'getter’ methods)

- Mutator methods: let us modify the object’s attribute values
(“setter’ methods)

- This is called encapsulation: the bundling of data with the methods
that operate on that data (another OOP principle)

class Book:
"""This class represents a book with attributes title, author, and year"""

attributes
__slots__ = ['_title', '_author', '_year']

__init__ is automatically called when we create new Book objects
we set the initial values of our attributes in __init _
def init_ (self, bookTitle='"', bookAuthor='"', bookYear=0):

self. _title = bookTitle

self._author = bookAuthor

self._year = int(bookYear)

/;faccessor (getter) methog;\
def getTitle(self):
return self._title

def getAuthor(self): \\\\\\\
return self._author Accessor methods return values of
def getYear(self): ~ attributes, but do not change them

return self._year 4//

mutator (setter) methods
def setTitle(self, bookTitle):
self._title = bookTitle

def setAuthor(self, bookAuthor):
self._author = bookAuthor

def setYear(self, bookYear):
self._year = int(bookYear)

class Book:
"""This class represents a book with attributes title, author, and year"""

attributes
__slots__ = ['_title', '_author', '_year']

__init__ is automatically called when we create new Book objects
we set the initial values of our attributes in __init _
def init_ (self, bookTitle='"', bookAuthor='"', bookYear=0):

self. _title = bookTitle

self._author = bookAuthor

self._year = int(bookYear)

accessor (getter) methods
def getTitle(self):
return self._title

def getAuthor(self):
return self._author

def getYear(self):
return self._year

K — Mutator methods change the value
ﬁe'gugz,?gt{ﬁ:i;) Igggkgiile): of attributes but do not explicitly
self._title = bookTitle return anything

def setAuthor(self, bookAuthor):
self._author = bookAuthor

def setYear(self, bookYear):
\\¥ self._year = int(bookYear)g/}

Using Accessor/Mutator Methods

. Use accessor methods to get the
>>> pp. getT1 tle() values of the attributes (when outside of

. . . class implementation
'Pride and Prejudice’ P)

>>> emma.getAuthor()

‘Jane Austen’
Use mutator methods to set or change
>>> pPS. getYear() the values of the attributes (when outside

1993 of class implementation)

>>> ps.setYear(1991)

>>> ps.getYear()
1991

Defining More Methods

- Beyond the accessor and mutator methods, we can define other

methods in the class definition of BOOK to manipulate or answer
questions about our book objects:

- numWordsInTitle() : returns the number of words in the
title of the book

- yearSincePub(currentYear) : takes in the current year
and returns the number of years since the book was published

- sameAuthorAs(otherBook) : takes another Book object as
a parameter and checks If the two books have the same author

class Book:
"""This class represents a book with attributes title, author, and year"""

attributes
__slots__ = ['_title', '_author', '_year'l

__init__ is automatically called when we create new Book objects
we set the initial values of our attributes in __init__
def __init__ (self, bookTitle='"', bookAuthor='"', bookYear=0):
self._title = bookTitle
self._author = bookAuthor
self._year = int(bookYear)

accessor (getter) methods
def getTitle(self):
return self._title

def getAuthor(self):
return self._author

def getYear(self):
return self._year

mutator (setter) methods
def setTitle(self, bookTitle):
self._title = bookTitle

def setAuthor(self, bookAuthor):
self._author = bookAuthor

def setYear(self, bookYear):
self._year = int(bookYear)

methods for manipulating Books

def numWordsInTitle(self):
"""Returns the number of words in title of book"""
return len(self._title.split())

def sameAuthorAs(self, otherBook):
"""Check if self and otherBook have same author"'"
return self._author == otherBook.getAuthor()

def yearsSincePub(self, currentYear):
"""Returns the number of years since book was published"""
return currentYear - self._year

Invoking Class Methods

- We invoke methods on specific instances of our class

- In this example, we are invoking Book methods on specific Book objects

>>>
>>> pp = Book("Pride and Prejudice", "Jane Austen", 1813)
>>> emma = Book("Emma", "Jane Austen", 1815)

>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps.numWordsInTitle()

4

>>> emmd.YearsSincePub(2022)
207

>>> ps.YearsSincePub(2022)
29

>>> ps.sameAuthorAs(emma)
False

>>> emma.sameAuthorAs(pp)
True

Print Representation of an Object

class TestingPrint():
__slots__ = [" _attr"]

def __init__ {¥self, value):
self._attr va lue

By default, if we print an object,

>>> test = TestingPrint("testing") .
the output is not helpful

>>> print(test)

<__main__.TestingPrint object at 0x105eeccad>

* Special method __str__ is automatically called when we ask to print
a class object in Python

» __Str__ must always return a string

- We can customize how the object is printed by writing a custom
__Str__ method for our class

- Very useful for debugging!

__str__ for Book class

What is a useful string representation of a Book?

Something that combines the attributes in a meaningful way

The format () string method comes in handy here

__str__ is used to generate a meaningful string representation for Book objects
__str__ is automatically called when we ask to print() a Book object

def __ str__ (self):
return "'{}', by {}, in {}".format(self._title, self._author, self._year)

»+ Now when we ask to print a specific instance of a Book, we get
something useful

>>> print(emma)

"Emma‘’, by Jane Austen, in 1815

Summary

- Today we built a simple Book class
* Declared attributes using __slots__
(Briefly) Learned about about scope and naming conventions in Python

+ Used the __1n1t__() method to initialize Book objects with their
attribute values

Defined accessor and mutator methods to interact with attributes and
avold accessing attributes directly

+ Note about mutators: If an attribute should not change, no need to
define a setter method for it!

* Implemented a few more “interesting” Book methods

* Implemented the __str__() method so that we get meaningful print
statements for our Book objects

H D @ = \ /.
T IEEEINT

