
CS134:
Classes & Objects 2

Announcements & Logistics
• Lab 8 is going to be a partner lab

• Must attend one lab session together

• Mon lab due on Wed, Tue lab due on Thur

• Lab 6 graded feedback: coming soon (sorry for the delay)

• HW 7 due Mon 10 pm (fewer questions this week)

Do You Have Any Questions?

Last Time
• Introduced the big idea of object oriented programming (OOP)
• Everything in Python is an object and has a type!

• We can create classes to define our own types
• Learned how to define and call methods on objects of a class

• Methods facilitate abstraction: hide unnecessary details
• Discussed using the self parameter in methods of a class (self is a a

reference to the calling instance)

• Quick aside: functions versus methods?
• Functions are not associated with a specific class
• Methods are associated with a specific class and are invoked on instances

of the class (using dot notation)

Today’s Plan
• Implement a simple Book class and learn about the following:

• Declaring data attributes of objects using __slots__
• Learning about scope and naming conventions in Python
• Using the __init__() method to initialize objects with their

attribute values
• Defining accessor and mutator methods to interact with attributes
• Implementing and invoking methods in general
• Implementing __str__() method to provide meaningful print

statements for custom objects

Defining a Class

Recap: Defining a Class
• Key features of a class:

• Attributes that describe instance-specific data

• Methods that act on those attributes
• When defining a new class (aka an object blueprint), we identify what

attributes are required and what actions will be performed
• For example, suppose we want to define a new Book class

• Attributes?
• Title, author, publication year, genre, …

• Methods?
• sameAuthorAs(), yearsSincePub(), …

Recap: Attributes
• Objects have state which is typically held in attributes

• For our Book class, these include the book’s title, author, and
publication year

• Every Book instance has different attribute values!

• In Python, we declare attributes using __slots__

• __slots__ is a list of strings that stores the names of all attributes in
our class (only names of attributes are stored, not the values)

• __slots__ is typically defined at the top of our class (before method
definitions)

Declaring Attributes in __slots__

class Book:

 """This class represents a book"""

 # declare Book attributes

 __slots__ = ["_author", "_title", "_year"]

indented body of class definition

“_author”,
“_title”, and
“_year” are
protected

attributes of
the Book

class

Notice the use of _

• Double leading underscore (__) in name (strictly private): e.g. __value
• “Invisible” from outside of the class

• Strong “you cannot touch this” policy (which is enforced)

• Single leading underscore (_) in name (private/protected): e.g. _value
• Can be accessed from outside, but really shouldn’t

• “Don’t touch this (unless you are a subclass)” policy

• Most attributes in CS134 should start with a single underscore

• No leading underscore (public): e.g. value
• Can be freely used outside class

• These conventions apply to methods names and attributes

Scope & Naming Conventions in Python

>>> a = TestingAttributes()
>>> a.__val
AttributeError: 'TestingAttributes' object has no attribute '__val'
>>> a._val
'I am private but accessible from outside.'
>>> a.val
'I am public.'

Attribute Naming Conventions

Note: Although we can access attributes directly using
dot notation, it’s bad practice. We should always use
methods to manipulate attributes. More on this later.

class TestingAttributes():
 __slots__ = ['__val', '_val', 'val']

 def __init__(self):
 self.__val = "I am strictly private."
 self._val = "I am private but accessible from outside."
 self.val = "I am public."

• How do we assign values to the attributes in __slots__?

• Attributes should be assigned initial values when creating new instances

• We can achieve this using the special __init__ method in Python

• The initializer method, like a constructor in Java

• The __init__ method is run automatically anytime a new instance of a
class is created

Initializing a Class: __init__

>>> obj = TestInit()

__init__ is called

class TestInit:
""" This class will test when __init__ is called"""
def __init__(self):

print("__init__ is called")

• The __init__ method should set values for attributes in __slots__
• Values are often provided as parameters to __init__

class Book:
""This class represents a book with attributes title, author, and year"""
attributes
_ indicate that they are protected
__slots__ = ["_title", "_author", "_year"]
def __init__(self, bookTitle, bookAuthor, bookYear):

self._title = bookTitle
self._author = bookAuthor
self._year = bookYear

Book class: __init__

>>> # creating book objects

>>> pp = Book("Pride and Prejudice", "Jane Austen", 1813)

>>> emma = Book("Emma", "Jane Austen", 1815)

>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)

>>> ps._title

'Parable of the Sower'

When referring to
class attributes, we use

self.{attribute name}.

Once again, it is better to use a method to access
attributes. We’ll fix this soon!

Class Methods

• We can provide default argument values in method and function definitions

• If we create a Book and don’t provide values for the arguments in
__init__, the values are set to be the default values (“” and 0 in this case)

Default Argument Values
class Book:

""This class represents a book with attributes title, author, and year"""
attributes
__slots__ = ["_title", "_author", "_year"]
def __init__(self, bookTitle='', bookAuthor='', bookYear=0):

self._title = bookTitle
self._author = bookAuthor
self._year = bookYear

>>> emptyBook = Book()
>>> emptyBook._title
''

Methods and Data Abstraction
• Ideally, we should not allow direct access to the object’s attributes:

• Instead we control access to attributes through accessor and mutator
methods and avoid accessing the attributes directly

• Accessor methods: provide “read-only” access to the object’s
attributes (“getter” methods)

• Mutator methods: let us modify the object’s attribute values
(“setter” methods)

• This is called encapsulation: the bundling of data with the methods
that operate on that data (another OOP principle)

>>> # creating book objects
>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps._title
'Parable of the Sower'

class Book:
 """This class represents a book with attributes title, author, and year"""

 # attributes
 __slots__ = ['_title', '_author', '_year']

 # __init__ is automatically called when we create new Book objects
 # we set the initial values of our attributes in __init__
 def __init__(self, bookTitle='', bookAuthor='', bookYear=0):
 self._title = bookTitle
 self._author = bookAuthor
 self._year = int(bookYear)

 # accessor (getter) methods
 def getTitle(self):
 return self._title

 def getAuthor(self):
 return self._author

 def getYear(self):
 return self._year

 # mutator (setter) methods
 def setTitle(self, bookTitle):
 self._title = bookTitle

 def setAuthor(self, bookAuthor):
 self._author = bookAuthor

 def setYear(self, bookYear):
 self._year = int(bookYear)

Accessor methods return values of
attributes, but do not change them

class Book:
 """This class represents a book with attributes title, author, and year"""

 # attributes
 __slots__ = ['_title', '_author', '_year']

 # __init__ is automatically called when we create new Book objects
 # we set the initial values of our attributes in __init__
 def __init__(self, bookTitle='', bookAuthor='', bookYear=0):
 self._title = bookTitle
 self._author = bookAuthor
 self._year = int(bookYear)

 # accessor (getter) methods
 def getTitle(self):
 return self._title

 def getAuthor(self):
 return self._author

 def getYear(self):
 return self._year

 # mutator (setter) methods
 def setTitle(self, bookTitle):
 self._title = bookTitle

 def setAuthor(self, bookAuthor):
 self._author = bookAuthor

 def setYear(self, bookYear):
 self._year = int(bookYear)

Mutator methods change the value
of attributes but do not explicitly

return anything

>>> pp.getTitle()
'Pride and Prejudice'
>>> emma.getAuthor()
'Jane Austen'
>>> ps.getYear()
1993
>>> ps.setYear(1991)
>>> ps.getYear()
1991

Using Accessor/Mutator Methods
Use accessor methods to get the

values of the attributes (when outside of
class implementation)

Use mutator methods to set or change
the values of the attributes (when outside

of class implementation)

• Beyond the accessor and mutator methods, we can define other
methods in the class definition of Book to manipulate or answer
questions about our book objects:

• numWordsInTitle(): returns the number of words in the
title of the book

• yearSincePub(currentYear): takes in the current year
and returns the number of years since the book was published

• sameAuthorAs(otherBook): takes another Book object as
a parameter and checks if the two books have the same author

Defining More Methods

class Book:
 """This class represents a book with attributes title, author, and year"""

 # attributes
 __slots__ = ['_title', '_author', '_year']

 # __init__ is automatically called when we create new Book objects
 # we set the initial values of our attributes in __init__
 def __init__(self, bookTitle='', bookAuthor='', bookYear=0):
 self._title = bookTitle
 self._author = bookAuthor
 self._year = int(bookYear)

 # accessor (getter) methods
 def getTitle(self):
 return self._title

 def getAuthor(self):
 return self._author

 def getYear(self):
 return self._year

 # mutator (setter) methods
 def setTitle(self, bookTitle):
 self._title = bookTitle

 def setAuthor(self, bookAuthor):
 self._author = bookAuthor

 def setYear(self, bookYear):
 self._year = int(bookYear)

 # methods for manipulating Books
 def numWordsInTitle(self):
 """Returns the number of words in title of book"""
 return len(self._title.split())

 def sameAuthorAs(self, otherBook):
 """Check if self and otherBook have same author"""
 return self._author == otherBook.getAuthor()

 def yearsSincePub(self, currentYear):
 """Returns the number of years since book was published"""
 return currentYear - self._year

Invoking Class Methods
• We invoke methods on specific instances of our class

• In this example, we are invoking Book methods on specific Book objects
>>> # creating book objects
>>> pp = Book("Pride and Prejudice", "Jane Austen", 1813)
>>> emma = Book("Emma", "Jane Austen", 1815)
>>> ps = Book("Parable of the Sower", "Octavia Butler", 1993)
>>> ps.numWordsInTitle()
4
>>> emma.YearsSincePub(2022)
207
>>> ps.YearsSincePub(2022)
29
>>> ps.sameAuthorAs(emma)
False
>>> emma.sameAuthorAs(pp)
True

• Special method __str__ is automatically called when we ask to print
a class object in Python

• __str__ must always return a string

• We can customize how the object is printed by writing a custom
__str__ method for our class

• Very useful for debugging!

>>> test = TestingPrint("testing")

>>> print(test)

<__main__.TestingPrint object at 0x105eecca0>

Print Representation of an Object

By default, if we print an object,
the output is not helpful

class TestingPrint():
__slots__ = ["_attr"]

def __init__(self, value):
self._attr = value

__str__ for Book class
• What is a useful string representation of a Book?

• Something that combines the attributes in a meaningful way
• The format() string method comes in handy here

• Now when we ask to print a specific instance of a Book, we get
something useful

 # __str__ is used to generate a meaningful string representation for Book objects
 # __str__ is automatically called when we ask to print() a Book object
 def __str__(self):
 return "'{}', by {}, in {}".format(self._title, self._author, self._year)

>>> print(emma)

'Emma', by Jane Austen, in 1815

Summary
• Today we built a simple Book class
• Declared attributes using __slots__
• (Briefly) Learned about about scope and naming conventions in Python
• Used the __init__() method to initialize Book objects with their

attribute values
• Defined accessor and mutator methods to interact with attributes and

avoid accessing attributes directly
• Note about mutators: If an attribute should not change, no need to

define a setter method for it!
• Implemented a few more “interesting” Book methods
• Implemented the __str__() method so that we get meaningful print

statements for our Book objects

The	end!

