
CS134:
Classes & Objects

Announcements & Logistics
• Lab 7 due Wed/Thurs, 10 pm

• Make sure your images and values match the handout

• HW 7 posted today, due Mon at 10 pm (on Glow)

• Lab 8 is going to be a partner lab

• Fill out partner google form (from Lida) by tomorrow @ 10 pm

• Both partners have to fill out the form!

• Can work by yourself but strongly encourage you to find a partner

• Must attend one lab session together

• Mon lab due on Wed, Tue lab due on Thur

Do You Have Any Questions?

Last Time
• Investigated a few more graphical recursion examples
• Wrapped up our recursion discussion
• Any remaining questions?

Today

• Start discussing our next topic: classes and objects

• Python is an object oriented programming (OOP) language
• Everything in Python is an object and has a type

• Learn how to define our own classes (types) and methods

Objects in Python

Objects in Python
• We have seen many ways to store data in Python

1234 3.14159 "Hello" [1, 5, 7, 11, 13] (1, 2, 3)
{"CA": "California", "MA": "Massachusetts"}

• Each of these is an object, and every object in Python has:

• a type (int, float, string, list, tuples, dictionaries, sets, etc)

• an internal data representation (primitive or composite)

• a set of functions/methods for interacting with the object

• Vocab: A specific object is an instance of a type

• 1234 is an instance of an int

• "Hello" is an instance of a string

type(object)
• The type() function returns the data type for an object

• Even functions are a type!

• Guido designed the language according
to the principle “first-class everything”

EVERYTHING IN PYTHON IS AN OBJECT
(AND HAS A TYPE)

“One of my goals for Python was to make it so that
all objects were "first class." By this, I meant that I
wanted all objects that could be named in the
language (e.g., integers, strings, functions, classes,
modules, methods, and so on) to have equal status.
That is, they can be assigned to variables, placed in
lists, stored in dictionaries, passed as arguments, and
so forth." — Guido Van Rossum
(Blog, The History of Python, February 27, 2009)

Objects and Types in Python

Stepping Back:
Object-Oriented Programming (OOP)

• Python is an “object-oriented” language

• We have been hinting at this aspect all semester

• Today we will embrace it!

• OOP (object oriented programming) is a fundamental programming paradigm

• It has four major principles:

• Abstraction - handle complexity by ignoring/hiding messy details

• Inheritance - derive a class from another class that shares a set of
attributes and methods

• Encapsulation - bundling data and methods that work together in a class

• Polymorphism - using a single method or operator for different uses

• We’ll explore some of these principles in more detail in the coming lectures

What are Objects?
• It’s time to formally define objects in Python

• Objects are:

• collections of data (variables or attributes) and

• methods (functions) that act on those data

• Example of abstraction:

• Abstraction is the art of hiding messy details

• Methods define behavior but hide implementation and internal
representation of data

• Eg., You have been using methods for built-in Python data
types (lists, strings, etc) all semester without really knowing
how the methods are implemented

Example: [1,2,3,4] has type list
• We don’t really know how Python stores lists internally

• Fortunately the typical Python programmer does not need how lists
are stored to use list objects (we’ve been doing it all semester!)

• How do we manipulate lists? Using the methods provided by Python.

• myList.append(), myList.extend(), etc.

• Take away: Internal representation of objects should be hidden
from users. Objects are manipulated through associated methods.

Defining Our Own Types

Creating Our Own Types: Classes
• It’s time to move beyond just the built in Python objects!

• We can create our own data types by defining our own classes

• Classes are like blueprints for objects in Python

• Creating a class involves:

• Defining the class name, attributes, methods

• Using the class involves:

• Creating new instances of the class (which create specific objects)

• myList = [1, 2],
myOtherList = list("abc")

• Performing operations on the instances through methods

• mylist.append(3)

Defining Our Own Type: Car class
Class definition provides a “blueprint”
for creating specific cars and specify

attributes of cars

Defining Our Own Type: Car class
Class definition provides a “blueprint”
for creating specific cars and specify

attributes of cars

Specific instances of the
Car class

Defining Our Own Type: Car class
Class definition provides a “blueprint”
for creating specific cars and specify

attributes of cars

Specific instances of the
Car class

Providing values for
attributes of the
Car class, such as
color, make, and

model, define key
features of

individual instances

Defining Our Own Type: Book class
Class definition provides a “blueprint”

for creating specific books and
specify attributes of books

Specific instances of the
Book class

Providing values for
attributes of the

Book class, such as
title, author, and
year, define key

features of
individual instances

• Methods are defined as part of the class definition and describe how
to interact with the class objects

• Example: Recall the following methods for the list class

Defining Methods of a Class

dot notation to “call” the
method on the object

>>> lst = list()
>>> lst.extend([1,2,3])
>>> lst
[1, 2, 3]
>>> lst.append(4)
>>> lst
[1, 2, 3, 4]

• On the previous slide, we called methods like append() and
extend() on a particular list object lst.

• We can define methods in our classes in a similar way

• Consider this simple example:

Defining Methods of a Class

class SampleClass:
 """Class to test the use of methods"""
 def greeting(self):
 print("Hello")

Class name (note the use of
CamelCase by convention)

• To create methods that can be called on an instance of a class, they must
have a parameter which takes the instance of the class as an argument

• In Python, the first parameter of a method is always self, and is

used as a reference to the calling instance

class SampleClass:
 """Class to test the use of methods"""
 def greeting(self):
 print("Hello")

All methods include self
as the first parameter.

Defining Methods of a Class

>>> sample = SampleClass()

>>> sample.greeting()
Hello

Our First Method

• How do we call the greeting method?

• We create an instance of the class and call the method on that
instance using dot notation:

sample is an instance of
SampleClass

Invoke the greeting()
method on sample

class SampleClass:
 """Class to test the use of methods"""
 def greeting(self):
 print("Hello")

Mysterious self Parameter
• Even though method definitions have self as the first parameter, we

don’t pass this parameter explicitly when we invoke the methods

• This is because whenever we call a method on an object, the object itself
is implicitly passed as the first parameter

• Note: In other languages (like Java) this parameter is implicit in method
definitions but in Python it is explicit and by convention named self

• Take away:

• When defining methods, always include self

• When calling or invoking methods, the value for self is passed implicitly
(meaning, we don’t specify it, but it happens automatically)

Summary of Classes and Methods
• Classes allow us to define our own data types

• We create instances of classes and interact with those instances using
methods

• All methods belong to a class, and are defined within a class

• A method’s purpose is to provide a way to access/manipulate instances
of the class)

• The first parameter in the method definition is the reference to the

calling instance (self)

• When invoking methods, this reference is provided implicitly

• Key features of a class:
• Attributes that describe instance-specific data

• Methods that act on those attributes
• When defining a new class (aka an object blueprint), it’s important to

identify what attributes are required and what actions will be
performed using those attributes (methods)

• For example, suppose we want to define a new Book class
• Attributes?

• Methods?

Defining Our Own Class: Book

• Key features of a class:
• Attributes that describe instance-specific data

• Methods that act on those attributes
• When defining a new class (aka an object blueprint), it’s important to

identify what attributes are required and what actions will be
performed using those attributes (methods)

• For example, suppose we want to define a new Book class
• Attributes?

• Title, author, publication year, genre, …
• Methods?

• sameAuthorAs(), yearsSincePub(), …

Defining Our Own Class: Book

class Book:

 """This class represents a book"""

indented body of class definition

Creating instances of the class:

book1 = Book()

book2 = Book()

Defining Our Own Class: Book

book1 is an instance of class Book

Name of class (always capitalized by convention)

book2 is another (different) instance of class Book

Attributes
• Objects have state which is typically held in instance variables or

(in Pythonic terms) attributes.

• Example: For our Book class, these include the book’s title, author, and
publication year

• Every Book instance has different attribute values!

• In Python, we declare attributes using __slots__

• __slots__ is a list of strings that stores the names of all attributes in
our class (note that only names of attributes are stored, not the values!)

• __slots__ is typically defined at the top of our class (before method
definitions)

Declaring Attributes in __slots__

class Book:

 """This class represents a book"""

 # declare Book attributes

 __slots__ = ["author", "title", "year"]

indented body of class definition

“author”,
“title”, and
“year” are

attributes of
the Book

class

Next up
• So we have attributes and methods
• How do we assign values to attributes?
• What actually happens when we create a new instance of a class?
• More on this (and more!) next time

The	end!

