
CS134:  
Graphical Recursion

Announcements & Logistics
• Lab 7 will be posted today: focuses on recursion

• Please complete Task 0 before you come to lab!!!

• Quick note about command line arguments  
>>> python3 bedtime.py duck cow dog

• Interpreted as a list of strings called argv; we provide the code for you in starter
• HW 6 due Monday @ 10 pm: covers sorting, dictionaries, sets, tuples
• Scheduled final: Fri, Dec 16, 9:30 am, details TBD

• CS TA applications due October 28 (today!)
• Feel free to submit Iris, Jeannie, Lida as references
• https://csci.williams.edu/tatutor-application/

Do You Have Any Questions?

https://csci.williams.edu/tatutor-application/

• A recursive function is a function that calls itself

• A recursive approach to problem solving has two main parts:
• Base case(s). When the problem is so small, we solve it

directly, without having to reduce it any further
• Recursive step. Does the following things:

• Performs an action that contributes to the solution
• Reduces the problem to a smaller version of the same

problem, and calls the function on this smaller subproblem

• The recursive step is a form of "wishful thinking”  
(also called the inductive hypothesis)

Last Time: Recursive Approach to Problem Solving

Today’s Plan
• Introduction to Turtle
• Graphical recursion examples
• Understanding function invariance and why it matters when doing

recursion

The Turtle Module
• Turtle is a graphics module first introduced in the 1960s by computer

scientists Seymour Papert, Wally Feurzig, and Cynthia Solomon.
• It uses a programmable cursor — fondly referred to as the “turtle” — to

draw on a Cartesian plane (x and y axis.)

• turtle is available as a built-in module in Python. See the
Python turtle module API for details.

• Basic turtle commands:

Turtle In Python

down()
up()

https://docs.python.org/3/library/turtle.html

Basic Turtle Movement
• forward(dist) or fd(dist),  

left(angle) or lt(angle),  
right(angle) or rt(angle),  
backward(dist) or bk(dist)

Drawing Basic Shapes With Turtle
• We can write functions that use turtle commands to draw shapes.
• For example, here’s a function that draws a square of the desired size

Drawing Basic Shapes With Turtle
• How about drawing polygons?

Adding Color!
• What if we wanted to add some color to our shapes?

Recursive Figures With Turtle
• Let’s explore how to draw pretty recursive pictures with Turtle
• We’ll start with figures that only require recursive calls
• Below we have a set of concentric circles of alternating colors
• How is this recursive?

Example:  
Concentric Circles

Concentric Circles With No Colors
• Recursive idea: we have circles within circles, and each circle becomes

successively smaller. In addition to drawing the circles, let’s keep track of
the number of circles we draw.

• Let’s first think about the circles without colors.
• Base case: radius of the circle is so small it’s not worth drawing, return 0

• Recursive step:

• Draw a single circle of radius r, increment total by 1
• Recursively draw concentric circles starting with an outer circle of a

slightly smaller radius r-g (where g is any positive number you want
to shrink the radius by, or the “gap” between the circles)

concentricCircles(radius, gap)

• radius: radius of the outermost circle

• gap: width of gap between circles

Concentric Circles
• Function definition

radius

gap

Concentric Circles

• Are we done?

Concentric Circles

• Pretty picture, and almost there! But not quite right. What happened?

Concentric Circles

• We need to reposition the turtle after each recursive call.

Concentric Circles

Concentric Circles

• Great! Now let’s add some color.

concentricCircles(radius, gap, colorOuter, colorInner)

• radius: radius of the outermost circle

• gap: width of the gap between circles

• colorOuter: color of the outermost circle

• colorInner: color that alternates with colorOuter

Concentric Circles With Colors
• Function definition

Concentric Circles: Adding Color
• Base case and recursive case stay the same
• How do we achieve the alternating colors?
• Just swap the order in the recursive call

• colorOuter becomes colorInner and vice versa
• Let’s also write a helper function to draw a circle filled in with some

color to clean up the recursive function itself

Helper Function

(0,0)

(0, -radius)

Starting	position	of	turtle

The Recursive Function

Concentric Circles

Invariance of Functions
• A function is invariant if the state of the object is the same before and
after the function is invoked

• Right now our concentricCirclesColor function is not invariant
with respect to the position of the turtle
• That is, the turtle does not end were it starts

• How can we make it invariant by returning the turtle to starting position?

turtle ends in center

Invariant Concentric Circles
• Any turtle movements that happen before the recursive call should be

“undone” after the recursive call to maintain proper invariance
• Rule of thumb: always return turtle to its starting position

Example: Nested Circles

Invariance of Recursive Functions
• Why do we care about invariance?

• Though not always necessary for correctness, it is a good property
to maintain in recursive functions

• Our graphical functions will not always work properly if it they are
not invariant

• Let's do an example with multiple recursive calls: nested circles

nestedCircles(radius, minRadius, colorOut, colorAlt)

• radius: radius of the outermost circle

• minRadius: minimum radius of any circle

• colorOut: color of the outermost circle

• colorAlt: color that alternates with colorOut

Multiple Recursive Calls
• Example: Nested circles function definition

Nested Circles
• Base case?

• When radius becomes less than minRadius
• Don’t draw anything return 0

• Recursive case

• Draw the outer circle, add one to total
• Position turtle for recursive calls
• How many recursive calls do we need?

nestedCircles(300, 150)
radius/2

radius/2radius/2 radius

Starting	position	of	turtle

Nested Circles
• Base case?

• When radius becomes less than minRadius
• Don’t draw anything return 0

• Recursive case

• Draw the outer circle, add one to total
• Position turtle for recursive calls
• How many recursive calls do we need?

• Two! Right subcircle and left subcircle

Nested Circles
• Recursive case

• Draw the outer circle, add one to total
• Position turtle for right recursive subcircle

• Recursive case

• Move the turtle to draw left subcircle recursively
• (continued from previous slide)

Nested Circles

Nested Circles
• Recursive case

• Are we done? Let’s try it!

Nested Circles
• Recursive case

• Invariance matters! We must return the turtle to its starting state
to make sure subsequent recursive calls behave correctly

Maintaining Invariance
• Move turtle back to

starting position to
maintain invariance Starting position

nestedCircles(300, 300) nestedCircles(300, 150) nestedCircles(300, 75)

nestedCircles(300, 37) nestedCircles(300, 9) nestedCircles(300, 2)

Next Time
• Next time: We’ll wrap up recursion with a few more examples and

compare to iterative approaches

The	end!

