CS1 34
Graphical Recursion

Announcements & Logistics

Lab 7 will be posted today: focuses on recursion

Please complete Task 0 before you come to lab!!l

Quick note about command line arguments

>>> python3 bedtime.py duck cow dog

Interpreted as a list of strings called argv; we provide the code for you in starter
HW 6 due Monday @ |0 pm: covers sorting, dictionaries, sets, tuples
Scheduled final: Fri, Dec |6,9:30 am, details TBD

CS TA applications due October 28 (today!)

Feel free to submit Iris, Jeannie, Lida as references

https://cscl.williams.edu/tatutor-application/

Do You Have Any Questions?

https://csci.williams.edu/tatutor-application/

Last Time: Recursive Approach to Problem Solving

A recursive function is a function that calls itself
A recursive approach to problem solving has two main parts:

* Base case(s). When the problem is so small, we solve it
directly, without having to reduce 1t any further

* Recursive step. Does the following things:
« Performs an action that contributes to the solution

* Reduces the problem to a smaller version of the same
problem, and calls the function on this smaller subproblem

- The recursive step Is a form of "wishful thinking” ‘
(also called the inductive hypothesis)

Joday's Plan

* Introduction to Turtle
- Graphical recursion examples

- Understanding function invariance and why it matters when doing
recursion

©

The Turtle Module

- Turtle is a graphics modaule first introduced in the 1960s by computer
scientists Seymour Papert, Wally Feurzig, and Cynthia Solomon.

- It uses a programmable cursor — fondly referred to as the “turtle” — to
draw on a Cartesian plane (x and y axis.)

pen down

.

Jurtle In Python

+ turtle is available as a built-in module in Python. See the
Python turtle module API for detalls.

« Basic turtle commands:

Use from turtle import * to use these commands:

fd (dist) turtle moves forward by /57

bk (dist) turtle moves backward by sz
lt(angle) turtle turns left zzo/e degrees

rt (angle) turtle turns right azg/ degrees

up () (pen up) turtle raises pen in belly
down () (pen down) turtle lower pen in belly

' pensize (width)

sets the thickness of turtle's pen to widsh

pencolor (color)

sets the color of turtle's pen to color

shape (shp) sets the turtle's shape to s/p

home () turtle returns to (0,0) (center of screen)
clear() delete turtle drawings; no change to turtle's state
reset () delete turtle drawings; reset turtle's state
setup (width, height) create a turtle window of given widsh and height

https://docs.python.org/3/library/turtle.html

Basic Turtle Movement

e forward(dist) or fd(dist),
left(angle) or 1t(angle),
right(angle) or rt(Cangle),
backward(dist) or bk(dist)

set up a 400x400 turtle window

setup (400, 400)

reset()

fd(100) # move the turtle forward 100 pixels

1t(90) # turn the turtle 90 degrees to the left
fd(100) # move forward another 100 pixels

complete a square
1t(90)
fd(100)
1t(90)
fd(100)
done()

Drawing Basic Shapes With Turtle

We can write functions that use turtle commands to draw shapes.

For example, here's a function that draws a square of the desired size

def drawSquare(length):

a loop that runs 4 times

and draws each side of the square

for i in range(4): ©©® Python Turtle Graphics
fd(length)
1t(90)

setup (400, 400)
reset()
drawSquare(150)

Drawing Basic Shapes With Turtle

How about drawing polygons!

def drawPolygon(length, numSides):
for i in range(numSides):
fd(length)
1t (360/numSides)

drawPolygon (80, 3) drawPolygon (80, 10)

Adding Color!

- What if we wanted to add some color to our shapes!

def drawPolygonColor(length, numSides, color):
set the color we want to fill the shape with
color 1is a string
fillcolor(color)

begin_fill()

for i in range(numSides):
fd(length)
1t(360/numSides)

end_fill()

drawfélygonColor(80, 10, "gold") drawaiygonColor(BO, 10, "purple")

Recursive Figures With Turtle

Let's explore how to draw pretty recursive pictures with Turtle
We'll start with figures that only require recursive calls
Below we have a set of concentric circles of alternating colors

How Is this recursive!

Example:
Concentric Circles

B) .0 = \ /e

Concentric Circles With No Colors

Recursive idea: we have circles within circles, and each circle becomes
successively smaller. In addition to drawing the circles, let's keep track of
the number of circles we draw.

Let's first think about the circles without colors.
Base case: radius of the circle is so small it's not worth drawing, return O
Recursive step:

Draw a single circle of radius I, increment total by |

Recursively draw concentric circles starting with an outer circle of a
slightly smaller radius r—g (where g is any positive number you want
to shrink the radius by, or the “gap’ between the circles)

Concentric Circles

- Function definition

concentricCircles(radius, gap)
radius: radius of the outermost circle

- gap: width of gap between circles

@ gap

Concentric Circles

def concentricCircles(radius, gap):
base case, don't draw anything, return 0
if radius < gap:
return 0
else:
tell the turtle draw a circle
circle(radius)

recursive function call; draw smaller circles
num = concentricCircles(radius—gap, gap)

we drew one circle in this step, plus however many we
drew recursively, so return 1 + num
return 1 + num

- Are we done!

Concentric Circles

concéhtriccircles(300, 30)

- Pretty picture, and almost there! But not quite right. VWhat happened?

Concentric Circles

concéhtriccircles(300, 30)

- We need to reposition the turtle after each recursive call.

Concentric Circles

def concentricCircles(radius, gap):
base case, don't draw anything, return @
if radius < gap:
return 0
else:
pen down, draw circle
down ()
circle(radius)

pen up, ensure the turtle doesn't draw while repositioning
up()

reposition the turtle for the next circle
1t(90)
fd(gap)
rt(90)

recursive function call; draw smaller circles
num = concentricCircles(radius—gap, gap)

we drew one circle in this step, plus however many we
drew recursively, so return 1 + num
return 1 + num

Concentric Circles

concéhtriccircles(300, 30)

©

« Great! Now let's add some color:

Concentric Circles With Colors

- Function definition

concentricCircles(radius, gap, colorOuter, colorInner)
radius: radius of the outermost circle
- gap: width of the gap between circles
colorOuter: color of the outermost circle

colorInner: color that alternates with colorQuter

Concentric Circles: Adding Color

Base case and recursive case stay the same

How do we achieve the alternating colors?

« Just swap the order in the recursive call

colorQuter becomes colorInner and vice versa

Let’s also write a helper function to draw a circle filled in with some
color to clean up the recursive function itself

Helper Function

def drawDisc(radius, color):
Draw circle of a given radius
and fill it with a given color

Turtle.PenDown() Turtle.PenUp()
put the pen down

down ()

set the color
fillcolor(color)

draw the circle (@,@)
begin_fill()

circle(radius)

end_fill()

put the pen up Starting position of turtle

0
P (0, —radius)

The Recursive Function

def concentricCirclesColor(radius, gap, colorOuter, colorInner):
Recursive function to draw concentric circles with T
alternating colors
base case, don't draw anything, return 0
if radius < gap:
return 0
else:
drawDisc(radius, colorOuter)
1t(90)
fd(gap) l
rt(90)
num = concentricCirclesColor(radius—gap, gap, colorInner, colorQOuter)
return 1 + num

Concentric Circles

concentricCirclesColor(300, 30, "gold", "purple"))

Invariance of Functions

- A function is invariant if the state of the object is the same before and
after the function is invoked

» Right now our concentricCirclesColor function is not invariant
with respect to the position of the turtle

« That s, the turtle does not end were It starts

- How can we make It invariant by returning the turtle to starting position?

def concentricCirclesColor(radius, gap, colorOuter, colorInner):)

turtle ends in center
Recursive function to draw concentric circles with
alternating colors

base case, don't draw anything, return @
if radius < gap:
return 0
else:
drawDisc(radius, colorOuter)
1t(90)
fd(gap)
rt(90)
num = concentricCirclesColor(radius—-gap, gap, colorInner, colorQuter)
return 1 + num

Invariant Concentric Circles

- Any turtle movements that happen before the recursive call should be
“undone” after the recursive call to maintain proper invariance

- Rule of thumb: always return turtle to its starting position

def concentricCirclesInvariant(radius, gap, colorOuter, colorInner):
Recursive function to draw concentric circles with alternating
color
base case, don't draw anything, return 0
if radius < gap:
return 0
else:
drawDisc(radius, colorOuter)
1t(90)
fd(gap)
rt(90)
num = concentricCirclesInvariant(radius—-gap, gap, colorInner, colorQuter)
move turtle back to starting position
1t(90)
bk(gap)
rt(90)

return 1 + num

Example: Nested Circles

= s x;o' 0 \ g@‘"%
@aﬁ Q\JJ$ @ Sk W

Invariance of Recursive Functions

- Why do we care about invariance!

 Though not always necessary for correctness, it is a good property
to maintain in recursive functions

- Our graphical functions will not always work properly if it they are
not invariant

- Let's do an example with multiple recursive calls: nested circles

Multiple Recursive Calls

- Example: Nested circles function definrtion

nestedCircles(radius, minRadius, colorOut, colorAlt)
radius: radius of the outermost circle
- minRadius: minimum radius of any circle
- colorOut: color of the outermost circle

- colorAlt: color that alternates with colorQut

Nested Circles

 Base case?
« When radius becomes less than minRadius

- Don't draw anything return O

 Recursive case
- Draw the outer circle, add one to total
- Posrition turtle for recursive calls

- How many recursive calls do we need!

radius

Z/SN1poJ

Starting position of turtle

nestedCircles(300, 150)

Nested Circles

 Base case?
« When radius becomes less than minRadius

- Don't draw anything return O

 Recursive case
- Draw the outer circle, add one to total
- Posrition turtle for recursive calls

- How many recursive calls do we need!

Nested Circles

 Recursive case

« Draw the outer circle, add one to total

- Position turtle for right recursive subcircle

def nestedCircles(radius, minRadius, colorOut, colorAlt):
if radius < minRadius:
return 0
else:
contribute to the solution
drawDisc(radius, colorOut)

save half of radius
halfRadius = radius/2

position the turtle to draw right subcircle
1t(90); fd(halfRadius); rt(90); fd(halfRadius)

draw right subcircle recursively
right = nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

Nested Circles

 Recursive case

- Move the turtle to draw left subcircle recursively

- (continued from previous slide)

draw right subcircle recursively
right = nestedCircles(halfRadius, minRadius, colorAlt, colorQOut)

position turtle for left subcircle
bk(radius)

draw left subcircle recursively
left = nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

Nested Circles

 Recursive case

+ Are we done! Let’s try it

Nested Circles

 Recursive case

* Invariance matters! We must return the turtle to its starting state
to make sure subsequent recursive calls behave correctly

Maintaining Invariance

def nestedCircles(radius, minRadius, colorOut, colorAlt):
if radius < minRadius:
return 0
else:
contribute to the solution
drawDisc(radius, colorOut)

save half of radius
halfRadius = radius/2

position the turtle to draw right subcircle
1t(90); fd(halfRadius); rt(90); fd(halfRadius)

draw right subcircle recursively

right = nestedCircles(halfRadius, minRadius rAlt, colorOut)
position turtle f subcircle
bk(radius)

draw left subcircle recursively
left = nestedCircles(halfRadius, minRadius, colorAlt, colorOut)

bring turtle back to start position
fd(halfRadius); 1t(90); bk(halfRadius); rt(90)

return total number of circles drawn
return 1 + right + left

nestedCircles(300, 300) nestedCircles(300, 150) nestedCircles(300, 75)

nestedCircles(300, 37) nestedCircles(300, 9) nestedCircles(300, 2)

Next [Ime

- Next time:We'll wrap up recursion with a few more examples and
compare to rterative approaches

H D @ = \ /.
T IEEEINT

