
CS134:  
Dictionaries and Sets

Announcements & Logistics
• Practice midterm on Glow under Files
• Lab 5 due Friday at noon for everyone

• We’re still working on grading Lab 4
• Midterm tomorrow in TCL 123:

• Thu Oct 20 6 - 7:30pm, 8 - 9:30pm
• TCL 206 reserved for reduced distractions/extra time (pick up exam

from Jeannie/Iris in TCL 123)
• Closed books and notes

• No class Fri Oct 21st!
• Lab 6 will be released Friday
• Read over before Mon/Tue

Do You Have Any Questions?

Last Time
• A dictionary is a mutable collection that maps keys to values

• Keys must be unique & immutable, values can any Python object
• Iterating over a dictionary: what do we iterate over?

• Iterate over the keys of a dictionary directly (by default)
• Dictionary comprehensions: similar to list comprehensions
• Learned about useful dictionary methods:

• dict.get(key, defaultVal)

• dict.values(), dict.items(), dict.keys()

Recap: Dictionary .get() method
• dict.get(key, defaultVal)

• If key exists, dict.get(key, defaultVal) returns the
value, just like dict[key]

• If the key does not exist, dict.get(key, defaultVal)
returns defaultVal

• If the key does not exist, dict[key] always returns a KeyError

• defaultVal is optional

• dict.get(key)

• If key exists, dict.get(key) returns the value, just like
dict[key]

• If the key does not exist, dict.get(key) returns None

Recap: Iterating Over a Dictionary

• We iterate over the keys of a dictionary directly in a for loop

• To iterate over values we can use the .values() method

• To iterate over key, value pairs we can use the .items() method 

calendar = {"Jan": 31, "Feb": 28, "Mar": 31, "Apr": 30,
 "May": 31, "Jun": 30, "Jul": 31, "Aug": 31,
 "Sep": 30, "Oct": 31, "Nov": 30, "Dec": 31}

>>> for month, days in calendar.items():
>>> ... print(month, days, end=" ")  
Jan 31 Feb 28 Mar 31 Apr 30 May 31 Jun 30 Jul 31  
Aug 31 Sep 30 Oct 31 Nov 30 Dec 31

>>> for days in calendar.values():
... print(days, end=" ")

31 28 31 30 31 30 31 31 30 31 30 31

>>> for month in calendar:
... print(month, end=" ")
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Today’s Plan
• Wrap up dictionaries
• Investigate sorting with dictionaries
• (Briefly) Discuss another unordered data structure: sets

• Review all data structures so far and when to use each

Sorting Operations with Dictionaries
• Let’s say we’re developing a Scrabble app
• We can store the score for each letter as a dictionary as below

• If we call the sorted() function on a dictionary, it returns an
ordered list of all the keys.

scrabbleScore = {'a':1, 'b':3, 'c':3, 'd':2, 'e':1,
 'f':4, 'g':2, 'h':4, 'i':1, 'j':8,
 'k':5, 'l':1, 'm':3, 'n':1, 'o':1,
 'p':3, 'q':10, 'r':1, 's':1, 't':1,
 'u':1, 'v':8, ‘w':4, 'x':8, 'y':4, 'z':10}

>>> print(sorted(scrabbleScore))

Sorting Operations with Dictionaries
• Let’s say we’re developing a Scrabble app
• We can store the score for each letter as a dictionary as below

• If we call the sorted() function on a dictionary, it returns an
ordered list of all the keys.

scrabbleScore = {'a':1, 'b':3, 'c':3, 'd':2, 'e':1,
 'f':4, 'g':2, 'h':4, 'i':1, 'j':8,
 'k':5, 'l':1, 'm':3, 'n':1, 'o':1,
 'p':3, 'q':10, 'r':1, 's':1, 't':1,
 'u':1, 'v':8, ‘w':4, 'x':8, 'y':4, 'z':10}

>>> print(sorted(scrabbleScore))
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x',
'y', 'z']

Sorting By Value
• This behavior isn’t super useful for Scrabble
• What might we want instead?

Sorting By Value
• This behavior isn’t super useful for Scrabble
• What might we want instead?

• Sort based on the scores of the letters (from highest to lowest)
• This known as a sort-by-value as opposed to sort-by-key

• As before, using sorted() with a key function (not be confused
with the keys in the dictionary!) comes in handy.

• We’ll need to spend just a little more effort to come up with a
suitable key function for dictionaries

• Ex: Jupyter notebook

Sorting By Value
• We first use the items() method to generate a list of tuples, where each

tuple is a key-value pair
• We then sort this list based on value (second element of each tuple.)

• We can also use a list comprehension after to extract just the keys if desired.

>>> def getScrabbleScore(letterScoreTuple):

>>> ... """ Takes a tuple corresponding to (letter, score) and returns the score """

>>> ... return letterScoreTuple[1]

>>> # first use the items method to get a list of (key, value) tuples

>>> # and then sort using a key function

>>> scrabbleItems = scrabbleScore.items()

>>> sortedScrabbleItems = sorted(scrabbleItems, key=getScrabbleScore, reverse=True)

>>> print(sortedScrabbleItems[0:3], '...', sortedScrabbleItems[-3:])

[('q', 10), ('z', 10), ('j', 8)] ... [('s', 1), ('t', 1), ('u', 1)]

Sets

New Unordered Data Structure: Sets
• Dictionaries are collections of unordered key, value pairs
• What if we only need an unordered collection of individual items?

• We can use a new data structure: sets
• Sets are mutable, unordered collections of immutable objects
• Sets are written as comma separated values between curly braces
• Like keys in a dictionary, values in a set must be unique and immutable

• Sets can be an effective way of eliminating duplicate values

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> people = {("Charlie", "Brown"), ("Lucy", "Van Pelt"),
 ("Franklin", "Armstrong")}
>>> emptySet = set() # empty set

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

>>> firstChoice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(firstChoice)
>>> uniques

>>> set("aabrakadabra")
???

???

New Unordered Data Structure: Sets
• Question: What is the potential downside of removing duplicates w/sets?

• Might lose the ordering of elements

>>> firstChoice = {'a', 'b', 'a', 'a', 'b', 'c'}
>>> uniques = set(firstChoice)
>>> uniques

>>> set("aabrakadabra")
{'a', 'b', 'c'}

{'a', 'b', 'd', 'k', 'r'}

• Can check membership in a set using in, not in

• Can check length of a set using len()
• Can iterate over values in a loop (order will be arbitrary)

>>> nums = {42, 17, 8, 57, 23}
>>> flowers = {"tulips", "daffodils", "asters", "daisies"}
>>> 16 in nums
False
>>> "asters" in flowers
True
>>> len(flowers)
4
>>> # iterable
>>> for f in flowers:
>>> ... print(f, end=" ")
tulips daisies daffodils asters

Sets: Membership and Iteration

end = " " prevents new line

Sets are Unordered
• Therefore we cannot:

• Index into a set (no notion of “position”)
• Concatenate two sets (concatenation implies ordering)
• Create a set of mutable objects:

• Such as lists, sets, and dictionaries

>>> {[3, 2], [1, 5, 4]}
TypeError
----> 1 {[3, 2], [1, 5, 4]}

TypeError: unhashable type: 'list'

Set Methods Summary
• We can use set methods to manipulate sets

• s.add(item): changes the set s by adding item to it

• s.remove(item): changes the set s by removing item from s.

• If item is not in s, a KeyError occurs

The following operations always return a new set.

• s1.union(s2) or s1 | s2: returns a new set that has all elements that are
either in s1 or s2

• s1.intersection(s2) or s1 & s2: returns a new set that has all the
elements that are in both sets.

• s1.difference(s2) or s1 - s2: returns a new set that has all the
elements of s1 that are not in s2

• s1 |= s2, s1 &= s2, s1 -= s2 are versions of |, &, - that mutate s1
to become the result of the operation on the two sets.

An Overview of Python
Data Structures (so far!)

Python Data Structures at a Glance
Lists Tuples Dictionaries Sets

Order Yes Yes No No

Mutability Yes No
Yes  

(keys are
immutable)

Yes  
(items are
immutable)

Iterable Yes Yes Yes Yes

Comprehensions Yes Yes (need to
enclose in tuple) Yes Yes

Methods

.append(),

.extend(),

.count(),

.index(),
etc

.count(),

.index(),
 .get(),

 .pop(),

 etc

 .add(),

 .remove(),

 etc

Python Data Structures at a Glance
Lists Tuples Dictionaries Sets

Order Yes Yes No No

Mutability Yes No
Yes  

(keys are
immutable)

Yes  
(items are
immutable)

Iterable Yes Yes Yes Yes

Comprehensions Yes Yes (need to
enclose in tuple) Yes Yes

Methods

.append(),

.extend(),

.count(),

.index(),
etc

.count(),

.index(),
 .get(),

 .pop(),

 etc

 .add(),

 .remove(),

 etc

Which to use when?

Does Order Matter?
• Examples where order in data is important:

• Ranked ballots
• Queues
• Words in a sentence
• Tables/Matrices

• Tuples or lists?
• Do we need to add/remove items dynamically?

• If yes, use lists (they are mutable!)
• If data stays same (no changes), use tuples (more space efficient)
• Even though you can concatenate items to tuples, it is not efficient, as

it requires “copying over all the data” and creating a new tuple

Unordered Collections
• When storing a collection of data with no implicit ordering:

• Use dictionaries or sets
• Dictionaries are more appropriate when there is a key, value pair

• Better performance in general as compared to ordered structures
• Convenient when we want to store data with different attributes and support

quick attribute lookups
• Can store a dictionary of dictionaries (just like lists of lists!)

peanutsDict = { 'cb23': {'name': 'Charlie Brown', 
 'age':8, 
 'icecream': 'cookie dough'},

 'pp3': {'name': 'Peppermint Patty', 
 'age': 7, 
 ‘icecream': 'peppermint'},

 'sd4': {'name': 'Snoopy Dog', 
 'age': 72, 
 ‘icecream': 'vanilla'}}

The	end!

