
CS134:  
Dictionaries & Comparison to Lists

Announcements & Logistics
• Practice midterm on Glow

• Midterm from F18 with slight modifications to fit our syllabus

• Lab 5 is a short debugging lab, due Friday at noon for everyone
• Expect most people to finish it during scheduled lab period

• Midterm: Thu Oct 20 6 - 7:30pm, 8 - 9:30pm in TCL 123 (Wege)
• TCL 206 reserved for reduced distractions/extra time (pick up

exam in TCL 123)

• Midterm review: Tue Oct 18 8-9:30pm in TCL 123
• Try to review practice midterm before then!

• No class Fri Oct 21st

Do You Have Any Questions?

Midterm Material
• Labs 1-4

• Lab 1: Intro to Python
• Lab 2: Day of the week (if else statements)
• Lab 3: Word puzzles (strings and loops)
• Lab 4: Every vote counts (lists, strings, lists of lists, loops)

• Homeworks 2-5
• Lectures 1-15 (up to dictionaries) + Jupyter notebooks
• Book: parts of Ch 1, 2, 3, 5, 8, 9 10, 12 (we won’t ask questions directly

from the book)

Midterm Topics
• Variables, Types & Arithmetic Operators (%, //, /, etc)
• Functions, Booleans and Conditionals (if elif else)
• Iteration: for loops, while loops, nested loops, list comprehensions
• Sequences:

• Strings: string methods, iteration, etc
• Lists: list methods (append, extend), iteration, lists of lists, etc
• Ranges and tuples
• Operators: +, [], [:], * , in/not in, etc

• File reading: with open(…) as
• Mutability and aliasing implications for lists
• Misc: doctests, simplification of verbose code

Last Time
• Discussed stable sorting and ways to override it using key function

• Introduced a new data structure: dictionary

• Unordered, mutable key, value pairs

• Keys must be immutable and unique, while values need not be

• E.g., a dictionary storing key-value pairs of names and ages:
{"Charlie": 8, "Linus": 5, "Snoopy": 72}

• (No dictionaries on the midterm)

Today’s Plan
• Discuss dictionaries in more detail with examples
• Learn about dictionary methods such as .get()

• Use dictionaries to find the most frequent words from a wordList
• Examine differences between storing data as lists/nested lists vs.

dictionaries

Recap: Dictionaries
• A dictionary is a mutable collection that maps keys to values

• Enclosed with curly brackets, and contains comma-separated items

• An item in the dictionary pair is a colon-separated key, value pair.

• There is no ordering between the keys of a dictionary!

• Keys must be immutable and unique

• Values can any Python object (numbers, strings, lists, tuples, etc.)

key value

Accessing/Adding Items in a Dictionary
• We access a dictionary using its keys as the “subscript”

• If the key exists, its value is returned. Otherwise, we get a KeyError

• To add a new key, value pair, we assign the key to the value using:
dictName[key] = value

• If the key already exists, an assignment will overwrite its value and assign

it the new value to the existing key

>>> # sample dictionary
>>> zipCodes = {"01267": "Williamstown", "60606": "Chicago",

 "48202": "Detroit", "97210": "Portland"}

value associated with key '60606'

value>>> # what US city has this zip code?
>>> zipCodes["60606"]
'Chicago'

key

Add a new key, value pair '11777': 'Port Jefferson'

>>> zipCodes["11777"] = "Port Jefferson"

Iterating Over a Dictionary
• Can iterate over the keys of a dictionary directly in a for loop
• Note: In Python 3.6 and beyond, the keys and values of a dictionary

are iterated over in the same order in which they were created.

>>> calendar = {"Jan": 31, "Feb": 28, "Mar": 31, "Apr": 30,
 "May": 31, "Jun": 30, "Jul": 31, "Aug": 31,
 "Sep": 30, "Oct": 31, "Nov": 30, "Dec": 31}

>>> for day in calendar:
>>> ... print(day, calendar[day], end=" ")

Jan 31 Feb 28 Mar 31 Apr 30 May 31 Jun 30
Jul 31 Aug 31 Sep 30 Oct 31 Nov 30 Dec 31

An aside: This changes
behavior of print to
use spaces instead of

new lines

Computing Frequency

Computing a frequency
• One common use of a dictionary is to store frequencies.
• Let’s write a function frequency() that takes as input a list of strings
wordList and returns a dictionary freqDict with the unique
strings in wordList as keys, and their number of occurrences (ints) in
wordList as values

• For example if wordList is:  
 
['hello', 'world', 'hello', 'earth', 'hello', 'earth'] 
 
the function should return a dictionary with the following items:

 {'hello': 3, ‘world': 1, 'earth': 2}

• One common use of a dictionary is to store frequencies.
• Let’s write a function frequency() that takes as input a list of strings
wordList and returns a dictionary freqDict with the unique
strings in wordList as keys, and their number of occurrences (ints) in
wordList as values

def frequencyOld(wordList):

 """Given a list of words, returns a dictionary of word frequencies"""

 freqDict = {} # initialize accumulator as empty dict

 for word in wordList:

 if word not in freqDict:

 freqDict[word] = 1 # add key with count 1

 else:

 freqDict[word] += 1 # update count

 return freqDict

Computing a frequency

Useful Dictionary Method: .get()
• The following code pattern is very common when using dictionaries: 

if aKey not in myDict:

 myDict[aKey] = initVal + incrementVal # add key

else: # if already exists

 myDict[aKey] += incrementVal # update val

• Rather than writing the if, else block as shown above, we can use
the .get() method for dictionaries 
 

Useful Dictionary Method: .get()
• The following code pattern is very common when using dictionaries: 

if aKey not in myDict:

 myDict[aKey] = initVal + incrementVal # add key

else: # if already exists

 myDict[aKey] += incrementVal # update val

• Rather than writing the if, else block as shown above, we can use
the .get() method for dictionaries 

myDict[aKey] = myDict.get(aKey, initVal) + incrementVal 

Useful Dictionary Method: .get()
• .get() method is an alternative to using [] to get the value

associated with a key in a dictionary; eliminates the need to check for
the key’s existence beforehand

• .get() takes two arguments: a key, and an optional default
value to use if the key is not in the dictionary

• It returns the value associated with the given key, and if key does
not exist, it returns the default value (if given), otherwise returns
None.

• Syntax: value = myDict.get(aKey, defaultVal) 
 
 
  key whose value we are

looking for in myDict
if key doesn't exist, return

this default value

• get() method does not modify the dictionary it is called on 
 

>>> ids = {"ikh1": "Iris", "jra1": "Jeannie", "lpd2": "Lida"}
>>> ids.get("jra1", "Ephelia")
'Jeannie'

>>> ids.get("xyz1", "Ephelia")
'Ephelia'

>>> ids # .get(..) does not change the dictionary!
{'ikh1': 'Iris', 'jra1': 'Jeannie', 'lpd2': 'Lida'}

>>> print(ids.get("xyz1"))
None

Useful Dictionary Method: .get()

Computing frequency Improved

def frequencyOld(wordList):

 """Given a list of words, returns a dictionary of word frequencies"""

 freqDict = {} # initialize accumulator as empty dict

 for word in wordList:

 if word not in freqDict:

 freqDict[word] = 1 # add key with count 1

 else:

 freqDict[word] += 1 # update count

 return freqDict

• Let's rewrite our frequency function using .get() instead of if else

• What should we write instead inside the for loop?

def frequencyOld(wordList):

 """Given a list of words, returns a dictionary of word frequencies"""

 freqDict = {} # initialize accumulator as empty dict

 for word in wordList:

 if word not in freqDict:

 freqDict[word] = 1 # add key with count 1

 else:

 freqDict[word] += 1 # update count

 return freqDict

def frequency(wordList):

 """Given a list of words, returns a dictionary of word frequencies"""

 freqDict = {} # initialize accumulator as empty dict

 for word in wordList:

 freqDict[word] = freqDict.get(word, 0) + 1

 return freqDict

Computing frequency Improved
• Let's rewrite our frequency function using .get() instead of if else

• What should we write instead inside the for loop?

Other Dictionary Methods

Dictionary Methods: keys(), values(), items()
• Dictionary methods keys(), values(), items(): return a (list-like)

object containing only the keys, values, and items, respectively.
• Note: We don’t use these very often in practice

calendar = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,

 'May': 31, 'Jun': 30, 'Jul': 31, 'Aug': 31,

 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31}

>>> calendar.keys()
dict_keys(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul',
'Aug', Sep', 'Oct', Nov', ‘Dec'])

>>> calendar.values()
dict_values([31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31])

>>> calendar.items()
dict_items([('Jan', 31), ('Feb', 28), ('Mar', 31), ('Apr', 30),
('May', 31), ('Jun', 30), ('Jul', 31), 'Aug', 31), ('Sep', 30),
('Oct', 31), ('Nov', 30), ('Dec', 31]))

Summary of Dictionary Methods

Method Result Mutates
dict?

.keys() Returns all keys as a dict_keys object No

.values() Returns all values as a dict_values object No

.items() Returns all (key, value) pairs as a dict_items object No

.get(key, val) Returns corresponding value if key in dict, else returns
val. Second argument is optional, defaults to None. No

.pop(key) Removes key:value pair with given key from dict and
returns associated val. KeyError if key not in dict. Yes

.update(dict2) Adds new key:value pairs from dict2 to dict, replacing
any key:value pairs with existing key Yes

.clear() Removes all items from the dict. Yes

Dictionaries and Mutability
• Dictionaries are mutable

• Has implications for aliasing!

>>> myDict = {1: 'a', 2: 'b', 3: 'c'}

>>> newDict = myDict # alias!

>>> newDict[4] = 'd'

>>> myDict # changes as well

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

• Note: dictionary keys must be immutable

• Cannot have keys of mutable types such as list
• Dictionary values can be any type (mutable values such as lists)

Dictionary Comprehensions
• Like list comprehensions, dictionary comprehensions are useful for

mapping and filtering
• Remember: when iterating over a dictionary, we are iterating over its keys

(in the order of creation)

calendar = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,

 'May': 31, 'Jun': 30, 'Jul': 31, 'Aug': 31,

 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31}

>>> days30 = {k: calendar[k] for k in calendar if calendar[k] == 30}
>>> print(days30)
{'Apr': 30, 'Jun': 30, 'Sep': 30, 'Nov': 30}

Advantages of Using Dictionaries
• Easy access based on keys rather than indices (or position)
• For example, recall our Scrabble score example

• To access the Scrabble score for 'p'using a dictionary we simply ask
for scrabbleScore['p']

• Difficult to accomplish with lists!
• Store letters and scores are stored as two “parallel” ordered lists?

Or a list of lists/tuples?
• We have to find where 'p' is located in these lists and then extract

its corresponding score

scrabbleScore = {'a':1 , 'b':3, 'c':3, 'd':2, 'e':1,

 'f':4, 'g':2, 'h':4, 'i':1, 'j':8,

 'k':5, 'l':1, 'm':3, 'n':1, 'o':1,

 'p':3, 'q':10, 'r':1, 's':1, 't':1,

 'u':1, 'v':8, 'w':4, 'x':8, 'y':4, 'z': 10}

Advantages of Using Dictionaries
• Side-by-side this is what that would look like

• Though list access seems like a minor notational inconvenience, it also has
computational implications

• Finding the position of a letter in a list requires looping over each letter
until we find the one we’re looking for (this is what .index() does!)

• The dictionary access on the other hand instantly knows what it’s
looking for

dictionary access

scoreDict = scrabbleScore['p']

list access

indexP = letters.index('p')

scoreList = scores[indexP]

Advantages of Using Dictionaries
• Let’s see how this difference plays out when we ask the computer to

do 6 million queries (people across the world play a lot of Scrabble!)
• We’ll use our old friend the time module for this

• Ex: Jupyter notebook

>>> # random letters to query several times

>>> randomLetter = ['a', 'l', 'q', 's', 'y', 'z']*1000000

>>> print("Number of queries", len(randomLetters))

Number of queries 6000000

Advantages of Using Dictionaries
• Even in this really simple case, dictionaries give a 4x speed-up!

Benefits of Dictionaries
• Dictionaries are more efficient than lists for some common operations

• When we insert into an ordered sequence (e.g., a list)
• We need to "move over" all elements to make space
• This is an expensive operation: worst case (insert at beginning of list)

takes time proportional to number of items stored in list
• When we search for an item in an ordered sequence:

• We might have to loop and check every item stored
• Using a dictionary instead of a list means:

• Can insert more efficiently (without having to move any other items)
• Can support more efficient searching (just look up key, no loop required)

• To learn more about about efficiency of data structures, take CS136/CS256!

The	end!

