CS1 34
Dictionaries & Comparison to Lists

- - *é"‘ "] \\ / Bﬂbo

Announcements & Logistics

* Practice midterm on Glow
« Midterm from FI8 with slight modifications to fit our syllabus
Lab 5 is a short debugging lab, due Friday at noon for everyone
Expect most people to finish it during scheduled lab period

Midterm: Thu Oct 20 6 - 7:30pm, 8 - 9:30pm in TCL 123 (Wege)

TCL 206 reserved for reduced distractions/extra time (pick up
exam In TCL [23)

Midterm review: Jue Oct 18 8-9:30pm in TCL |23

Try to review practice midterm before then!

No class Fri Oct 2 |st

Do You Have Any Questions?

Midterm Material

Labs [-4

Lab |:Intro to Python

Lab 2: Day of the week (if else statements)

Lab 3:Word puzzles (strings and loops)

Lab 4: Every vote counts (lists, strings, lists of lists, loops)
Homeworks 2-5
Lectures |-15 (up to dictionaries) + Jupyter notebooks

Book: parts of Ch [,2,3,5,8,9 10, [2 (we won't ask questions directly
from the book)

Midterm lopics

Variables, Types & Arithmetic Operators (%, //,/, etc)
Functions, Booleans and Conditionals (if elif else)

[teration: for loops, while loops, nested loops, list comprehensions

Sequences:

- Strings: string methods, iteration, etc
Lists: list methods (append, extend), iteration, lists of lists, etc
Ranges and tuples
Operators: +,[][:] *,in/not in, etc

File reading: with open(...) as

Mutability and aliasing implications for lists

Misc: doctests, simplification of verbose code

Last [Ime

Discussed stable sorting and ways to override it using key function
Introduced a new data structure: dictionary

Unordered, mutable key, value pairs

Keys must be immutable and unique, while values need not be

E.g., adictionary storing key-value pairs of names and ages:

{"Charlie": 8, "Linus": 5, "Snoopy": 72}

-+ (No dictionaries on the midterm)

Joday's Plan

Discuss dictionaries in more detall with examples

Learn about dictionary methods such as .get ()
Use dictionaries to find the most frequent words from a wordList

Examine differences between storing data as lists/nested lists vs.

dictionaries
. ;o‘
S \0
Jd
\' &P
e —

Recap: Dictionaries

» A dictionary is a mutable collection that maps keys to values

Enclosed with curly brackets, and contains comma-separated items
* An item In the dictionary pair is a colon-separated key, value pair.

- There is no ordering between the keys of a dictionary!

sample dictionary
zipCodes = {'01267': 'Williamstown', '60606': 'Chicago’
'48202': 'Detroit', '97210': 'Portland'}

key value

Keys must be immutable and unique

- Values can any Python object (numbers, strings, lists, tuples, etc.)

Accessing/Adding [tems In a Dictionary

- We access a dictionary using its keys as the “subscript”

- If the key exists, its value is returned. Otherwise, we get a KeyError

>>> # sample dictionary
>>> zipCodes = {"01267": "Williamstown", "60606": "Chicago",

"48202": "Detroit", "97210": "Portland"}

>>> # what US city has this zip code? key value
>>> z1pCodes["60606"]
"Chicago’ —value associated with key '60606'

+ lo add a new key, value pair; we assign the key to the value using:
dictName[key] = value

- If the key already exists, an assignment will overwrite its value and assign
it the new value to the existing key

>>> z1pCodes["11777"] "Port Jefferson"

Add a new key, value pair '11777"': 'Port Jefferson'’

terating Over a Dictionary

- (Can iterate over the keys of a dictionary directly in a for loop

- Note: In Python 3.6 and beyond, the keys and values of a dictionary
are iterated over in the same order in which they were created.

>>> cdlendar = {"Jan": 31, "Feb": 28, "Mar": 31, "Apr": 30,
"May": 31, "Jun": 30, "Jul": 31, "Aug": 31,
"Sep": 30, "Oct": 31, "Nov": 30, "Dec": 31}

>>> for day 1n calendar:
>>> .. print(day, calendar[day], end=" ")

Jan 31 Feb 28 Mar 31 Apr 30 May 31 Jun 30 An aside: This changes
Jul 31 Aug 31 Sep 30 Oct 31 Nov 30 Dec 31 behavior of print to

use spaces instead of
new lines

Computing Frequency

=) @ 5 \ /e
Er=EE =11

Computing a frequency

- One common use of a dictionary is to store frequencies.

- Let's write a function frequency () that takes as input a list of strings
wordL1ist and returns a dictionary fregDict with the unique
strings in wordL1st as keys, and their number of occurrences (ints) in
wordList as values

» For example if wordL1ist is:
['"hello', 'world', 'hello', 'earth', 'hello', 'earth']

the function should return a dictionary with the following rtems:

{'hello': 3, ‘world': 1, 'earth': 2}

Computing a frequency

- One common use of a dictionary is to store frequencies.

Let's write a function frequency () that takes as input a list of strings
wordList and returns a dictionary freqDict with the unique
strings in wordL1st as keys, and their number of occurrences (ints) in
wordL1ist as values

def frequencyOld(wordList):

"""Given a list of words, returns a dictionary of word frequencies
freqDict = {} # initialize accumulator as empty dict
for word in wordList:
if word not in fregDict:
fregDictlword] = 1 # add key with count 1
else:
fregDict [word] += 1 # update count
return fregDict

Useful

Dictionary Method: .get ()

» The following code pattern is very common when using dictionaries:

if aKey not in myDict:

myDict[aKey] = initVal + incrementVal # add key

else: # 1if already exists

myDict[aKey]l += incrementVal # update val

» Rather than writing the 1f, else block as shown above, we can use
the .get () method for dictionaries

Useful Dictionary Method: . get ()

- The following code pattern is very common when using dictionaries:

if aKey not in myDict:

myDict[aKey] = initVal + incrementVal # add key
else: # 1f already exists

myDict[aKey] += incrementVal # update val

» Rather than writing the 1f, else block as shown above, we can use
the .get () method for dictionaries

myDict[aKey]l = myDict.get(aKey, initVal) + incrementVal

Useful Dictionary Method: . get ()

.get () method is an alternative to using [] to get the value
associated with a key In a dictionary; eliminates the need to check for
the key's existence beforehand

.get() takestwo arguments: a key, and an optional default
value to use if the key is not in the dictionary

- It returns the va lue associated with the given key, and if key does
not exist, it returns the defau Lt va lue (if given), otherwise returns
None.

- Syntax. value = myDict.get(aKey, defaultVal)

key whose value we are it key doesn't exist, return
looking for in myD1ct this default value

Useful Dictionary Method: . get ()

- get () method does not modify the dictionary it is called on

>>> 1ds {"1kh1": "Iris", "jral”: "Jeannie", "lpd2": "Lida"}
>>> 1ds.get("jral", "Ephelia")

'Jeannie’

>>> ids.get("xyz1", "Ephelia")

"Ephelia’

>>> 1ds # .get(..) does not change the dictionary!
{"1tkh1': "Iris', 'jral': 'Jeannie', 'lpd2': 'Lida'}

>>> print(ids.get("xyz1"))
None

Computing Trequency Improved

- Let's rewrite our Trequency function using . get () instead of if else

def frequencyOld(wordList):
"""Given a list of words, returns a dictionary of word frequencies
freqDict = {} # initialize accumulator as empty dict
for word in wordList:
if word not in freqDict:
fregDictlword] = 1 # add key with count 1
else:
fregDict[word] += 1 # update count
return freqDict

- What should we write instead inside the for loop?

Computing Trequency Improved

- Let's rewrite our Trequency function using . get () instead of if else

def frequencyOld(wordList):

Given a list of words, returns a dictionary of word frequencies
freqDict = {} # initialize accumulator as empty dict

for word in wordList:

if word not in freqDict:
fregDict[word] = 1 # add key with count 1
else:
fregDict[word] += 1 # update count
return freqDict

- What should we write instead inside the for loop?

def frequency(wordList):
"""Given a list of words, returns a dictionary of word frequencies
freqDict = {} # initialize accumulator as empty dict

for word in wordList:
freqDict[word] = fregDict.get(word, 0) + 1
return freqDict

Other Dictionary Methods

B) .0 = \ /e

Dictionary Methods: keys(), values(), items()

object containing only the keys, values, and items, respectively.

- Note:We don't use these very often in practice

calendar

>>> calendar.keys()

{'Jan': 31, 'Feb': 28, 'Mar': 31,
‘May': 31, 'Jun': 30, 'Jul': 31,
‘Sep': 30, 'Oct': 31, 'Nov': 30,

"Apr':
"Aug’:
'‘Dec’:

Dictionary methods keys (), values(), items(): return a (list-like)

30,
31,
31}

dict_keys(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul’,

"Aug', Sep', 'Oct’', Nov', ‘Dec'])

>>> cdlendar.values()

dict_values([31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31])

>>> cdlendar.items()

dict_items([('Jan', 31), ('Feb', 28), ('Mar', 31), ('Apr', 30),
(‘May', 31), ("Jun’, 30), ('Jul’, 31), "Aug’, 31), ('Sep’, 30),

('Oct', 31), ('Nov', 30), ('Dec', 31]))

Summary of Dictionary Methods

.keys() Returns all keys as a dict_keys object No
.values() Returns all values as a dict_values object No
.1tems() Returns all (key, value) pairs as a dict_items object No
.getCkey, val) Returns corresponding value if key in dict, else returns No

val. Second argument is optional, defaults to None.

Removes key:value pair with given key from dict and
returns associated val. KeyError if key not in dict.

.pop(Ckey) Yes

Adds new key:value pairs from d1ct2 to dict, replacing Yes
any key:value pairs with existing key

.update(dict2)

.clear() Removes all items from the dict. Yes

Dictionaries and Mutability

« Dictionaries are mutable

- Has implications for aliasing!
>>> myDict = {1: 'a', 2: 'b', 3: 'c'}
>>> newDict myDict # alias!
>>> newDict[4] = 'd'
>>> myDict # changes as well
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
- Note: dictionary keys must be immutable
-+ Cannot have keys of mutable types such as list

- Dictionary values can be any type (mutable values such as lists)

Dictionary Comprehensions

- Like list comprehensions, dictionary comprehensions are useful for
mapping and filtering

- Remember: when iterating over a dictionary, we are rterating over its keys
(in the order of creation)

calendar = {'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30,
‘May': 31, 'Jun': 30, 'Jul': 31, 'Aug': 31,

'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31}

>>> days30 = {k: calendar[k] for k in calendar if calendar[k] == 30}
>>> print(days30)
{"Apr': 30, 'Jun': 30, 'Sep': 30, 'Nov': 30}

Advantages of Using Dictionaries

Easy access based on keys rather than indices (or position)

For example, recall our Scrabble score example

scrabbleScore = {'a':1 , 'b':3, 'c':3, 'd':2, 'e':1,
‘f':4, '9':2, 'h':4, 'i':1, 'j':8,
‘k':5, 'U':1, 'm':3, 'n':1, 'o':1,
‘p':3, 'q':10, 'r':1, 's':1, 't':1,
'u':1, 'v':8, 'w':4, 'x':8, 'y':4, 'z': 10}

» To access the Scrabble score for ' p ' using a dictionary we simply ask
for scrabbleScore['p"']

Difficult to accomplish with lists!

- Store letters and scores are stored as two “parallel” ordered lists?
Or a list of lists/tuples?

- We have to find where 'p' is located in these lists and then extract
its corresponding score

Advantages of Using Dictionaries

- Side-by-side this is what that would look like

dictionary access # list access
scoreDict = scrabbleScore['p"] indexP = letters.index('p")
scoreList = scores[indexP]

- Though list access seems like a minor notational inconvenience, it also has
computational implications

- Finding the position of a letter in a list requires looping over each letter
until we find the one we're looking for (this is what .« index () does!)

- The dictionary access on the other hand instantly knows what It's
looking for

Advantages of Using Dictionaries

Let's see how this difference plays out when we ask the computer to
do 6 million queries (people across the world play a lot of Scrabble!)

- We'll use our old friend the t1me module for this

>>> # random letters to query several times

>>> randomLetter = ['a', 'l', 'q', 's', 'y', 'z']1x1000000
>>> print("Number of queries", len(randomLetters))

Number of queries 6000000

Ex: Jupyter notebook

Advantages of Using Dictionaries
- Even in this really simple case, dictionaries give a 4x speed-up!

generate list of letters and scores
letters = list(scrabbleScore.keys())
scores = list(scrabbleScore.values())

time using list operations to compute total score
startTime = time.time()
totalScore = 0

for query in randomLetters:
index = letters.index(query)
totalScore += scores[index]

endTime = time.time()
timeList = endTime - startTime
print ("Time taken using a list", round(timeList, 3), "seconds")

Time taken using a list 2.219 seconds

time using dictionaries to compute total score
startTime = time.time()
totalScore = 0

for query in randomLetters:
totalScore += scrabbleScore[query]

endTime = time.time()
timeDict = endTime - startTime
print("Time taken using a dictionary", round(timeDict, 3), "seconds")

Time taken using a dictionary 0.589 seconds

Benefits of Dictionaries

Dictionaries are more efficient than lists for some common operations
- When we insert into an ordered sequence (e.g,, a list)
- We need to "move over" all elements to make space

This is an expensive operation: worst case (insert at beginning of list)
takes time proportional to number of items stored in list

- When we search for an item in an ordered sequence:

- We might have to loop and check every rtem stored

Using a dictionary instead of a list means:
Can insert more efficiently (without having to move any other items)
Can support more efficient searching (just look up key, no loop required)

- To learn more about about efficiency of data structures, take CS136/CS256!

H D @ = \ /.
T IEEEINT

