CS 134
Sorting & Dictionaries

Announcements & Logistics

* No homework this week!
* Practice midterm will be released on Glow under Files
* [wo versions: with and without solutions
* Midterm from FI8 with slight modifications to fit our syllabus
Lab 5 will be a short debugging lab
Expect most people to finish it during scheduled lab period
Midterm: Thur Oct 20, 6-7:30pm or 8-9:30pm
Midterm review: Jue Oct |8, 8-9:30pm

No class Fri Oct 21 regardless of Mountain Day!

Do You Have Any Questions?

Last [Ime

Discussed new immutable sequences: tuples
- All sequence operations apply to tuples
Useful for multi-item assignment (argument unpacking)

- Appropriate when passing collections of data around that should
not be mutated (and you want to avoid aliasing issues)

Learned about sorting and default sorting behavior
Discussed how we can override the default sorting behavior

By using reverse=True

Joday's Plan

Continue discussing sorting in Python
Explore ways to override default behavior using Key function
Discuss stable sorting

Discuss a new data structure: dictionary
"Unordered" and mutable collection

Ordered/sequential data structures (like lists, tuples, strings) aren't
appropriate for all use cases

For many applications, unordered collections are more efficient

1
@
\oixo
\' <P
[P—]

Sorting with a key function

Now suppose we have a list of tuples that we want to sort by something
other than the first item

Example: We have a list of course tuples, where the first item is the course
name, second item is the enrollment capacity, and third item is the term (Fall/

Spring).

'CS136"', 60, 'Spring'),
'"ECON233', 30, 'Fall'),

'STAT200', 50, 'Spring'),
'MATH110', 90, 'Spring')]

courses [('CS134"', 90, 'Spring'),
'AFR206', 30, 'Spring'),
'MUS112', 10, 'Fall'),

'PSYC201', 50, 'Fall'),

AN AN AN SN
AN AN AN SN

Suppose we want to sort these courses by their capacity (second element)

- We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

Sorting with a key function

Defining a key function explicitly:

+ We can define an explicit Key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def capacity(courseTuple):
'''"Takes a sequence and returns item at index 1'''
return courseTuple[1]

»+ Once we have defined this function, we can pass it as a key when
calling sorted()

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

Sorting with a key function

sorted(seq, key=function)
Interpret as for el in seq: use function(el) to sort seq

For each element in the sequence, sorted() calls the key
function on the element to figure out what “feature” of the data

should be used for sorting

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

For each course in courses (a list of tuples), sort based on
value returned by capacity(course)

Sorting with a kKey function

'CS136"', 60, 'Spring'),
'ECON233', 30, 'Fall'),

'STAT200', 50, 'Spring'),
'MATH110', 90, 'Spring')]

courses = [('CS134"', 90, 'Spring'),
('AFR206', 30, 'Spring'),
('MUS112', 10, 'Fall'),
('PSYC201', 50, 'Fall'),

AN AN AN SN

def capacity(courseTuple):
'''"Takes a sequence and returns item at index 1'''
return courseTuple[1]

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

[('MUS112', 10, 'Fall'),
('AFR206', 30, 'Spring'),
('ECON233', 30, 'Fall'),
('STAT200', 50, 'Spring'),
('PSYC201', 50, 'Fall'),
('CS136"', 60, 'Spring'),
('CS134', 90, 'Spring'),
('MATH110', 90, 'Spring')]

Python Sorting I1s Stable

+ Python's sorting functions are stab Le

+ [tems that are “equal” according to the sorting Key have the same
relative order as in the original (unsorted) sequence

courses [('CS134"', 90, 'Spring'), ('CS136', 60, 'Spring'),
('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),
('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
('PSYC201', 50, 'Fall'), ('"MATH110', 90, 'Spring')]

def term(courseTuple):
'''"Takes a sequence and returns item at index 2'''
return courseTuple[2]

sort courses by term
notice the impact of stable sorting wrt to ties
sorted(courses, key=term)

[('ECON233', 30, 'Fall'),
('MUS112', 10, 'Fall'),

('PSYC201', 50, 'Fall') ~ Here we are sorting by term. Notice the
('CS134", ' 9@: 'Sp ring"), ordering of courses with Fall term and those
('CS136', 60, 'Spring'), with Spring term (same as original list)

('AFR206', 30, 'Spring'),
('STAT200', 50, 'Spring'),
('"MATH110', 90, 'Spring')]

Breaking Ties using key

We can override this default behavior and specify how to break ties by
supplying a key function that returns a tuple

if you want to handle ties, can return a tuple in key function
def termAndCap(courseTuple):

'''"Takes a sequence and returns item at index 2'''

return courseTuple[2], courseTuple[1]

sorted(courses, key=termAndCap)

[('MUS112', 10, 'Fall'),
('ECON233', 30, 'Fall'),
('PSYC201', 50, 'Fall'),
('AFR206', 30, 'Spring')
('STAT200', 50, 'Spring')
('CS136", 60, 'Spring')

)
)

Notice that now the ties are
broken in favor of capacity
('CS134', 90, 'Spring'
('"MATH110', 90, 'Spring'

Examples:
Sorting with a key Function

B) .0 = \ /e

Other uses for key

What if we want to override the default sorting behavior for integers so
that they sort based on absolute values (or magnitude)?

That Is,
For an input [-50, 50, -29, 27, 8]
The sorted output should be [8, 27, -29, -50, 50]

Can we also define some sensible sorting behavior on mixed lists

eg, ['a', 42, 'b', 100]? By default, sorted() will throw an
error on such lists.

Ex: Jupyter notebook

Sorting on Magnitude

def absoluteValue(num):
'"""Takes a number and returns its absolute value
1T num < 0:
return =1 * num
else:
return num

>>> numbers = [-50, 50, -29, 27, 8]
>>> print("Default sorting behavior", sorted(numbers))

Default sorting behavior [-50, -29, 8, 27, 50]
>>> print("Sorting on magnitude", sorted(numbers, key=absoluteValue))
Sorting on magnitude [8, 27, -29, -50, 50]

Sorting Mixed Lists

* We can use the ASCII values of characters to make sensible comparisons of
letters to numbers. However, custom sorting behaviors are really only limited
by your imagination!

def returnOrdValue(element):
"'' Returns the ASCII value for an element if it is a character,

otherwise assumes that the given element is a number and returns
the number itself '''
if type(element) == str:
return ord(element)
else:
return element

>>> mixedList = ['a', 'b', 24, 50, 125]
>>> print("Sorting mixed list ", sorted(mixedList, key=returnOrdValue))

Sorting mixed list [24, 50, 'a', 'b', 125]

Sorting Takeaways

- sorted() function and .sort() list method, by default, sort
sequences In ascending and lexicographic order

- sorted() function works for any sequence, always returns a
new sorted list

.s0rt () method sorts lists in place, uses dot notation for
invocation (only works on lists!)

- We can override Python'’s default sorting behavior by supplying optional
parameters Key (function), and reverse (Boolean)

- Note: . sort () method for lists also supports key and reverse
parameters just like sorted()

Dictionaries

: Q.0 &\ [/
@ﬁﬁ\d$®\—é

Sequences vs Unordered Collections

- Sequence: a group of items that come one after the other (there is
an implicit ordering of items)

- Sequences In Python: strings, lists, tuples, ranges

 Unordered Collection: a group of things bundled together for a
reason but without a specific ordering

- Maintaining order between items is not always necessary

- Ordering items comes at a cost in terms of efficiency!

« For some use cases, it Is better to store an unordered collection

- Python has two data structures which are unordered:

* Dictionaries and sets: both of them are mutable

- We will discuss dictionaries today

Dictionaries

» A dictionary is a mutable collection that maps keys to values

Enclosed with curly brackets, and contains comma-separated rtems
Each item In the dictionary Is a colon-separated key, value pair

- There Is no ordering between the keys of a dictionary!

sample dictionary
zipCodes = {'01267': 'Williamstown', '60606': 'Chicago’,
'48202': 'Detroit', '97210': 'Portland'}

key value key value
Keys must be an immutable type such as ints, strings, or tuples
Keys of a dictionary must also be unique: no duplicates allowed!

- Values can be any Python type (ints, strings, lists, tuples, etc.)

Accessing ltems In a Dictionary

« Dictionaries are unordered so we cannot index into them: no notion of

first or second item, etc.

- We access a dictionary using its Keys as the subscript in [] notation
- If the key exists, its corresponding value is returned

- If the key does not exist, it leads to a KeyError

>>> # sample dictionary
>>> zipCodes = {"01267": "Williamstown", "60606": "Chicago",
"48202" . Detroit, "97210": "Portland"}

>>> # what US city has this zip code? key value
>>> z1pCodes["60606"]
"Chicago’ ——value associated with key '60606'

>>> # what US city has this zip code?
>>> z1pCodes["48202"]

‘Detroit’ value associated with key ‘48202

Adding a Key, Value Pair

- Dictionaries are mutable, so we can add items or remove items from it

+ To add a new key, value pair, we can simply assign the key to the value

usingg dictName[key] = value

>>> z1pCodes["11777"] "Port Jefferson"
>>> z1pCodes

Add key, value pair '11777"': "'Port Jefferson'

{'01267': '"Williamstown',
'60006': 'Chicago',
'48202": 'Detroit’',
'97210': 'Portland',
'11777"': 'Port Jefferson'}

- If the key already exists, an assignment operation as above will overwrite its

value and assign it the new value

Operations on

Dictionaries

- Just like sequences, we can use the len() function on dictionaries to find
out the number of keys it contains

 To check If a key exists or does not exist in a dictionary, we can use the
in ornot 1n operator respectively

>>> z1pCodes

{'01267":
'606006 "' :
'48202" .
'97210":
'11777":

'"Williamstown',
"Chicago’,
'Detroit’,
"Portland’,

"Port Jefferson'}

>>> len(zipCodes)

5

>>> "90210" 1n zipCodes
False

>>> "01267" 1n zipCodes
True

>>> "Chicago" 1in zipCodes

False

Should always check if a key exists before

accessing its value in a dictionary

Creating

Dictionaries

- Several ways to create dictionaries:

- Direct assighment: provide key, value pairs delimited with { }

- Start with empty dict and add key, value pairs
+ Empty dictis{} or dict()
- Apply the built-in function dict () to a list of tuples

direct assignment

scrabbleScore = {'a':1 ,
'f':4,
'k':5,
'p':3,
'u':1,

Ibl

<. —aQ

Note: keys may be listed in any
order; since dictionaries are
unordered

Creating Dictionaries

» Direct assignment: provide key, value pairs delimited with { }

- Start with empty dict and add key, value pairs
» Empty dictis{} or dict()
- Apply the built-in function dict () to a list of tuples

accumulate in a dictionary
verse = "let it be, let it be, let it be,let it be,there will be an answer, let it be"
counts = {} # empty dictionary
for line in verse.split(',"'):
if line not in counts:

counts[line] = 1 # initialize count
else:

counts[line] += 1 # update count

>>> counts
{'let 1t be': 5, "there will be an answer': 1}

>>> # use dict() function

>>> dict([('a', 5), ('b"', 7), ('c', 10)])
{'a': 5, 'b': 7, 'c': 10}

Example:
Frequency

E) 8 B e\

Example: Trequency

- Let's write a function frequency () that takes as input a list of strings
wordList and returns a dictionary fregDict with the unique
strings in wordList as keys, and their number of occurrences (ints) in

wordList as values
» For example ifwordL1st is

['hello', 'world', 'hello', 'earth', 'hello', 'earth']
the function should return a dictionary with the following items

{'hello': 3, ‘world': 1, 'earth': 2}

Example: Trequency

Let's write a function frequency () that takes as input a list of strings
wordList and returns a dictionary freqDict with the unique
strings in wordList as keys, and their number of occurrences (ints) in

wordList as values

def frequency(wordList):
""UGiven a list of words, returns a dictionary of word frequencies

freqDict = {} # initialize accumulator as empty dict

for word in wordList:

if word not in fregDict:
fregDictlword] = 1 # add key with count 1

else:
freqDict[word] += 1 # update count

return freqDict

More on this next timel!

