
CS134:  
Sorting & Dictionaries



Announcements & Logistics
• No homework this week!

• Practice midterm will be released on Glow under Files
• Two versions:  with and without solutions
• Midterm from F18 with slight modifications to fit our syllabus

• Lab 5 will be a short debugging lab
• Expect most people to finish it during scheduled lab period

• Midterm:  Thur Oct 20, 6-7:30pm or 8-9:30pm

• Midterm review: Tue Oct 18, 8-9:30pm

• No class Fri Oct 21 regardless of Mountain Day!

Do You Have Any Questions?



Last Time
• Discussed new immutable sequences:  tuples

• All sequence operations apply to tuples
• Useful for multi-item assignment (argument unpacking)
• Appropriate when passing collections of data around that should 

not be mutated (and you want to avoid aliasing issues)

• Learned about sorting and default sorting behavior
• Discussed how we can override the default sorting behavior 

• By using reverse=True



Today’s Plan
• Continue discussing sorting in Python

• Explore ways to override default behavior using key function 
• Discuss stable sorting

• Discuss a new data structure:  dictionary

• "Unordered" and mutable collection
• Ordered/sequential data structures (like lists, tuples, strings) aren't 

appropriate for all use cases
• For many applications, unordered collections are more efficient



Sorting with a key function
• Now suppose we have a list of tuples that we want to sort by something 
other than the first item

• Example: We have a list of course tuples, where the first item is the course 
name, second item is the enrollment capacity, and third item is the term (Fall/
Spring). 

• Suppose we want to sort these courses by their capacity (second element)

• We can accomplish this by supplying the sorted() function with a key 
function that tells it how to compare the tuples to each other

courses = [('CS134',   90, 'Spring'), ('CS136',   60, 'Spring'), 
           ('AFR206',  30, 'Spring'), ('ECON233', 30, 'Fall'), 
           ('MUS112',  10, 'Fall'),   ('STAT200', 50, 'Spring'),  
           ('PSYC201', 50, 'Fall'),   ('MATH110', 90, 'Spring')]



Sorting with a key function
• Defining a key function explicitly: 

• We can define an explicit key function that, when given a tuple, 
returns the parameter we want to sort the tuples with respect to

• Once we have defined this function, we can pass it as a key when 
calling sorted()

def capacity(courseTuple): 
    '''Takes a sequence and returns item at index 1''' 
    return courseTuple[1]

# we can tell sorted() to sort by capacity instead 
sorted(courses, key=capacity)



• sorted(seq, key=function) 

• Interpret as for el in seq:  use function(el) to sort seq 

• For each element in the sequence, sorted() calls the key 
function on the element to figure out what “feature” of the data 
should be used for sorting

• For each course in courses (a list of tuples), sort based on 
value returned by capacity(course)

Sorting with a key function

# we can tell sorted() to sort by capacity instead 
sorted(courses, key=capacity)



Sorting with a key function

def capacity(courseTuple): 
    '''Takes a sequence and returns item at index 1''' 
    return courseTuple[1]

# we can tell sorted() to sort by capacity instead 
sorted(courses, key=capacity)

courses = [('CS134',   90, 'Spring'), ('CS136',   60, 'Spring'), 
           ('AFR206',  30, 'Spring'), ('ECON233', 30, 'Fall'), 
           ('MUS112',  10, 'Fall'),   ('STAT200', 50, 'Spring'),  
           ('PSYC201', 50, 'Fall'),   ('MATH110', 90, 'Spring')]

[('MUS112',  10, 'Fall'), 
 ('AFR206',  30, 'Spring'), 
 ('ECON233', 30, 'Fall'), 
 ('STAT200', 50, 'Spring'), 
 ('PSYC201', 50, 'Fall'), 
 ('CS136',   60, 'Spring'), 
 ('CS134',   90, 'Spring'), 
 ('MATH110', 90, 'Spring')]



• Python's sorting functions are stable
• Items that are “equal” according to the sorting key have the same 

relative order as in the original (unsorted) sequence 

Python Sorting is Stable

def term(courseTuple): 
    '''Takes a sequence and returns item at index 2''' 
    return courseTuple[2]

# sort courses by term 
# notice the impact of stable sorting wrt to ties 
sorted(courses, key=term)

[('ECON233', 30, 'Fall'), 
 ('MUS112',  10, 'Fall'), 
 ('PSYC201', 50, 'Fall'),  
 ('CS134',   90, 'Spring'),  
 ('CS136',   60, 'Spring'), 
 ('AFR206',  30, 'Spring'), 
 ('STAT200', 50, 'Spring'),  
 ('MATH110', 90, 'Spring')]

Here we are sorting by term. Notice the 
ordering of courses with Fall term and those 

with Spring term (same as original list)

courses = [('CS134',   90, 'Spring'), ('CS136',   60, 'Spring'), 
           ('AFR206',  30, 'Spring'), ('ECON233', 30, 'Fall'), 
           ('MUS112',  10, 'Fall'),   ('STAT200', 50, 'Spring'),  
           ('PSYC201', 50, 'Fall'),   ('MATH110', 90, 'Spring')]



• We can override this default behavior and specify how to break ties by 
supplying a key function that returns a tuple

Breaking Ties using key

Notice that now the ties are 
broken in favor of capacity

# if you want to handle ties, can return a tuple in key function 
def termAndCap(courseTuple): 
    '''Takes a sequence and returns item at index 2''' 
    return courseTuple[2], courseTuple[1]

sorted(courses, key=termAndCap)

[('MUS112',  10, 'Fall'), 
 ('ECON233', 30, 'Fall'), 
 ('PSYC201', 50, 'Fall'),  
 ('AFR206',  30, 'Spring'), 
 ('STAT200', 50, 'Spring'),  
 ('CS136',   60, 'Spring'), 
 ('CS134',   90, 'Spring'),  
 ('MATH110', 90, 'Spring')]



Examples:
Sorting with a key Function



Other uses for key
• What if we want to override the default sorting behavior for integers so 

that they sort based on absolute values (or magnitude)?

• That is,

• For an input [-50, 50, -29, 27, 8] 
• The sorted output should be [8, 27, -29, -50, 50] 

• Can we also define some sensible sorting behavior on mixed lists  
e.g., ['a', 42, 'b', 100]? By default,  sorted() will throw an 
error on such lists.

• Ex: Jupyter notebook



Sorting on Magnitude
def absoluteValue(num): 
  '''Takes a number and returns its absolute value''' 
   if num < 0: 
     return -1 * num 
   else:  
     return num

>>> numbers = [-50, 50, -29, 27, 8] 
>>> print("Default sorting behavior", sorted(numbers)) 

>>> print("Sorting on magnitude", sorted(numbers, key=absoluteValue)) 

Default sorting behavior [-50, -29, 8, 27, 50]

Sorting on magnitude [8, 27, -29, -50, 50]



Sorting Mixed Lists
• We can use the ASCII values of characters to make sensible comparisons of 

letters to numbers. However, custom sorting behaviors are really only limited 
by your imagination!

def returnOrdValue(element): 
   ''' Returns the ASCII value for an element if it is a character,  
   otherwise assumes that the given element is a number and returns    
   the number itself ''' 
   if type(element) == str: 
     return ord(element) 
   else: 
     return element

>>> mixedList = ['a', 'b', 24, 50, 125] 
>>> print("Sorting mixed list ", sorted(mixedList, key=returnOrdValue)) 

Sorting mixed list [24, 50, 'a', 'b', 125]



Sorting Takeaways
• sorted() function and .sort() list method, by default, sort 

sequences in ascending and lexicographic order

• sorted() function works for any sequence, always returns a 
new sorted list

• .sort() method sorts lists in place, uses dot notation for 
invocation (only works on lists!) 

• We can override Python’s default sorting behavior by supplying optional 
parameters key (function), and reverse (Boolean)

• Note: .sort() method for lists also supports key and reverse 
parameters just like sorted()



Dictionaries



Sequences vs Unordered Collections
• Sequence:  a group of items that come one after the other (there is 

an implicit ordering of items)
• Sequences in Python:  strings, lists, tuples, ranges

• Unordered Collection:  a group of things bundled together for a 
reason but without a specific ordering 

• Maintaining order between items is not always necessary
• Ordering items comes at a cost in terms of efficiency!

• For some use cases, it is better to store an unordered collection
• Python has two data structures which are unordered:

• Dictionaries and sets:  both of them are mutable 

• We will discuss dictionaries today



Dictionaries
• A dictionary is a mutable collection that maps keys to values

• Enclosed with curly brackets, and contains comma-separated items

• Each item in the dictionary is a colon-separated key, value pair

• There is no ordering between the keys of a dictionary!

key value key value

• Keys must be an immutable type such as ints, strings, or tuples

• Keys of a dictionary must also be unique:  no duplicates allowed!

• Values can be any Python type (ints, strings, lists, tuples, etc.)



• Dictionaries are unordered so we cannot index into them:  no notion of 
first or second item, etc.

• We access a dictionary using its keys as the subscript in [] notation
• If the key exists, its corresponding value is returned
• If the key does not exist, it leads to a KeyError

>>> # sample dictionary
>>> zipCodes = {"01267": "Williamstown", "60606": "Chicago", 

       "48202": Detroit, "97210": "Portland"}

Accessing Items in a Dictionary

value associated with key '60606'

value associated with key ‘48202'

value>>> # what US city has this zip code?
>>> zipCodes["60606"]
'Chicago'

>>> # what US city has this zip code?
>>> zipCodes["48202"]
'Detroit'

key



Adding a Key, Value Pair
• Dictionaries are mutable, so we can add items or remove items from it
• To add a new key, value pair, we can simply assign the key to the value 

using:   dictName[key] = value 

• If the key already exists, an assignment operation as above will overwrite its 
value and assign it the new value

Add key, value pair '11777': 'Port Jefferson'

>>> zipCodes["11777"] = "Port Jefferson"
>>> zipCodes

{'01267': 'Williamstown',
 '60606': 'Chicago',
 '48202': 'Detroit',
 '97210': 'Portland',
 '11777': 'Port Jefferson'}



Operations on Dictionaries
• Just like sequences, we can use the len() function on dictionaries to find 

out the number of keys it contains
• To check if a key exists or does not exist in a dictionary, we can use the 
in or not in operator,’ respectively

>>> zipCodes
{'01267': 'Williamstown',
 '60606': 'Chicago',
 '48202': 'Detroit',
 '97210': 'Portland',
 '11777': 'Port Jefferson'}
>>> len(zipCodes) 

5

>>> "90210" in zipCodes
False
>>> "01267" in zipCodes
True
>>> "Chicago" in zipCodes
False

Should always check if a key exists before 
accessing its value in a dictionary



Creating Dictionaries
• Several ways to create dictionaries:

• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of tuples

Note:  keys may be listed in any 
order, since dictionaries are 

unordered



• Direct assignment: provide key, value pairs delimited with { }
• Start with empty dict and add key, value pairs

• Empty dict is {} or dict()
• Apply the built-in function dict() to a list of tuples

Creating Dictionaries

# accumulate in a dictionary 
verse = "let it be,let it be,let it be,let it be,there will be an answer,let it be" 
counts = {} # empty dictionary 
for line in verse.split(','): 
    if line not in counts: 
        counts[line] = 1 # initialize count 
    else: 
        counts[line] += 1 # update count

>>> counts
{'let it be': 5, 'there will be an answer': 1}
>>> # use dict() function
>>> dict([('a', 5), ('b', 7), ('c', 10)]) 
{'a': 5, 'b': 7, 'c': 10}



Example:
Frequency



Example:  frequency
• Let’s write a function frequency() that takes as input a list of strings 
wordList and returns a dictionary freqDict with the unique 
strings in wordList as keys, and their number of occurrences (ints) in 
wordList as values

• For example if wordList is  
 
['hello', 'world', 'hello', 'earth', 'hello', 'earth'] 
 
the function should return a dictionary with the following items

  {'hello': 3, ‘world': 1, 'earth': 2}



Example:  frequency
• Let’s write a function frequency() that takes as input a list of strings 
wordList and returns a dictionary freqDict with the unique 
strings in wordList as keys, and their number of occurrences (ints) in 
wordList as values

• More on this next time!

def frequency(wordList): 
    """Given a list of words, returns a dictionary of word frequencies""" 
    freqDict = {} # initialize accumulator as empty dict 
    for word in wordList: 
        if word not in freqDict: 
            freqDict[word] = 1 # add key with count 1 
        else: 
            freqDict[word] += 1 # update count 
    return freqDict


