CS|34:
Tuples & Sorting

H D @ = \ /.
T IEEEINT

Announcements & Logistics

HW 5 due Monday at 10pm - last HW before midterm
Lab 4
Part | Feedback returned this afternoon
Part 2: Due next Wed/Thur at 10 pm
Midterm reminder: Thur Oct 20: 6-/:30 pm and 8-9:30 pm
Midterm review: TJue Oct 18:8-9:30 pm
Midterm practice problems will be released soon
Student help hours for next week are now posted on webpage
Lots of hours on Tue, Wed, and Thur!

If the CS common room gets too crowded, we'll move to TCL 21 /A/216

Student

—lelp

Hours
- Week

Nex

CS 134: Fall 2022

(Today) JE B Oct9-15,2022 ~

8am

9am

10am

11am

3pm

4pm

5pm

6pm

7pm

8pm

9pm

10pm

Sun 10/9

1:30p - 4:30p

Mon 10/10

Tue 10/11

ip-3p
Jeannie & Lida
Student Help
Hours

CS Common Room

Wed 10/12

9 - 10

Iris Lecture
Schow 030 A

10 - 11

Jeannie Lecture
Schow 030 A

11 -12p
Jeannie Lecture
Schow 030 A

12p - 1:30p

Iris Student
Healn Hniire

Ccs Commt1p -2p

Rnnm !'{rdJeannie

2p - 3:30p

Lida Student
Heln Hours

CS Common Room

Thu 10/13

ip - 2:30p
Lida Student
Heln Heor2:30P = 3

€S Comm¢J€annie
Stiident

Iris StudSermag
Haln Hnnire

CS Common

Ronm (3rd Flnar

Week
Fri 10/14

9-10

Iris Lecture
Schow 030 A

10 - 11

Jeannie Lecture
Schow 030 A

11 -12p
Jeannie Lecture
Schow 030 A

Looking Ahead

No HW posted next week
* Welll post practice midterm questions instead
Labon Oct 17/18
- Short lab on debugging strategies
- Start and finish during scheduled lab session!
No need to start in advance
Things to review in preparation for the midterm
Review lab solutions and HW questions
Review Jupyter notebooks and slides
Discuss practice midterm questions

No class on Fri Oct 21 (regardless of Mountain Day)

Last [Ime

* Learned about aliasing in Python
Need to be careful with aliasing when using lists due to mutability

Discussed ways to create "new" lists (true copies):
newList = myList[:] # slicing
newList [el for el in myList] # list comprehension

Discussed while loops

Needed for ranked-choice voting on Lab 4 Part 2

Recap: Loops
| Initialize a variable used in the test condition
2. Keyword that indicates the beginning of the loop
3. Test condition that causes the loop to end when False

4. Colon that indicates the end of the loop definition

5. Within the loop body (indented!), update the variable used in the test condition

Initialize a variable for test condition
\

def printHalves(nj:

. Col
while n > 0: oten

print (n) Test condition causing loop to end

n=n//2
Update test condition variable in loop body

Keyword for beginning of loop

Joday's Plan

- Today we will discuss a new immutable sequence: tuples

Revisit sorting and default sorting behavior

Discuss how we can override the default sorting behavior

., @
\,QO
\,OJXO
\:s
CY—

Tuples: An Immutable Sequence

Tuples are an immutable sequence of values (almost like immutable
lists) separated by commas and enclosed within parentheses ()

string tuple
>>> names = ('"Jeannie", "Iris", "Lida")

1nt tuple
>>> primes = (2, 3, 5, 7, 11)

s 1ng leton A tuple of size 1 is called a singleton.
>>> num = (5 ,) Note the (funky) syntax.

parentheses are optional
>>> values = 5, 6

empty tuple
>>> emp = ()

Tuples as Immutable Sequences

Tuples, like strings, support any sequence operation that does not

involve mutation: e.g,
Llen() function: returns number of elements in tuple
[]1 indexing: access specific element
+, >k tuple concatenation
[:]:slicing to return subset of tuple (as a new tuple)
1n and Not 1n:check membership

for Lloop:iterate over elements in tuple

Multiple Assisgnment and Unpacking

Tuples support a simple syntax for assigning multiple values at once, and
also for "unpacking" sequence values

>>> a, b =4, 7
reverse the order of values in tuple
>>> b, a=a, b
tuple assignment to “unpack” list elements
>>> cbInfo = ['Charlie Brown', 8, Falsel
>>> name, age, glasses = cbInfo
Note that the preceding line Is just a more concise way of writing:
>>> name = cbInfo[0]
>>> age = cbInfol[1]

>>> glasses = cbInfo[2]

Multiple Return from Functions

Tuples come Iin handy when returning multiple values from functions

multiple return values as a tuple

def arithmetic(numl, num2):
'''"Takes two numbers and returns the sum and product'''
return numl + num2, numl * num?2

>>> arithmetic(10, 2)
(12, 20)
>>> type(arithmetic(3, 4))

<class 'tuple'>

Conversion between Seguences

- The functions tuple(), list(),and str() convert between sequences
>>> word = "Williamstown"

>>> charList = list(word) # string to list

>>> charList

['w', *'‘i*, *1‘, 't+, 'i‘, ‘'a', 'm', 's', 't', 'o', 'w', 'n'l]
>>> charTuple = tuple(charList) # list to tuple

>>> charTuple

("W, "i*, *'1*, *'1‘, 'i‘, ‘'a', 'm', 's', 't', 'o', 'w', 'n')
>>> list((1, 2, 3, 4, 5)) # tuple to list

(1, 2, 3, 4, 5]

Conversion between Seguences

» The functions tuple(), list(),and str() convert between sequences
>>> str(('hello', ‘world')) # tuple to string
"('hello', ‘world')"

>>> numRange = range(12)

>>> list(numRange) # range to list

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> str(list(numRange)) # range to list to string
'‘'(e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]"'

- See Jupyter for more examples

Sorting Tuples & More

=) @ 5 \ /e

sorted()

- sorted() is a built-in Python function (not a method!) that takes a sequence
(string, list, tuple) and returns a new sorted sequence as a list

- By default, sorted () sorts the sequence in ascending order (for numbers)
and alphabetical (dictionary) order for strings

- sorted() does not alter the sequence it is called on and always returns the
type List

>>> nums = (42, -20, 13, 10, 0, 11, 18) # tuple of ints
>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

>>> letters = ('a', 'c', 'z', 'b', 'Z', ‘A")

>>> sorted(letters)

[IAI’ IZI’ IaI’ Ibl’ ICI’ IZI]

sorted()

sorted(string) returns a sorted list of strings (or more
specifically, characters). It does not return a string!

>>> sorted("Iris")

[‘r*, 'i‘, 'r', 's'l]

>>> sorted("Jeannie")

['‘y', 'a', 'e', 'e', 'i', 'n', 'n']
>>> sorted("xhello!x")

[I!I’ I*I’ I*I’ IeI’ Ihl’ I'LI’ I'LI’ IOI]

Sorting Strings

Strings are sorted based on the ASCII values of their characters
ASCII stands for “American Standard Code for Information Interchange”

Common character encoding scheme for electronic communication
(that Is, anything sent on the Internet!)

Special characters come first, followed by capital letters, then
lowercase letters

Characters encoded using integers from @—127
Can use Python functions ord () and chr() to work with these:
ord(str): takesa character and returns its ASCll value as int

chr(int): takes an ASCll value as int and returns its
corresponding character (STr)

DO NOT MEMORIZE!

ASCIl TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A % 74 4A) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C 76 4C L 108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Y/ 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 5A Z 122 IA 2z
27 1B [ESCAPE] 59 3B ; 91 58 [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

An aside: sort() vs sorted()

. 50rt () method is only for lists and sorts by mutating the list in
place; invoked using dot notation

- sorted() function can be used to sort any sequence (strings, lists,

tuples). It always returns a new sorted list, and does NOT modify
the original sequence

Example:
listl = [6, 3, 4]; 1list2 = [6, 3, 4]
listl.sort() # sort listl by mutating values

sorted(list2) # returns a xnewx sorted Llist

list1 Before list1 After list2 Before list2 After

[6, 3, 4] [3, 4, 6] [6, 3, 4] [6, 3, 4]

Does not change!

Sorting Tuples and Lists

- Sorting a list of (or a tuple of) tuples with sorted() sorts elements in
ascending order by their first item

» If there is a tie, Python breaks the tie by comparing the second items
» If the second items are also tied, it compares the third items, and so on

>>> fruits = [(12, ‘apples'), (4, 'bananas'), (27, 'grapes')]

>>> sorted(fruits)
[(4, ‘bananas'), (12, 'apples'), (27, 'grapes')]
>>> pairs = [(4, 5), (o, 2), (12, 1), (11, 3)]

>>> sorted(pairs)
[(0, 2), (4, 5), (11, 3), (12, 1)]

- Note: The same is true for lists and lists of lists

» This sorting behavior is referred to as lexicographical sorting

Sorting Tuples and Lists

- Sorting a list of (or a tuple of) tuples with sorted () sorts elements in
ascending order by their first item

* If there Is a tie, Python breaks the tie by comparing the second items

- If the second items are also tied, it compares the third items, and so on
>>> triples = [(1, 2, 3), (2, 2, 1), (1, 2, 1)]

>>> sorted(triples)

[(1, 2, 1), (1, 2, 3), (2, 2, 1)]

>>> chars = [(8, 'a', '$'), (8, 'a', '!"), (7, 'c', '@")]
>>> sorted(chars)

[(7z, 'c', '@), (8, 'a', '!'), (8, 'a', '$")]

Question: How do we sort based on the second/third item in tuples?
Or sort in reverse order?

Changing the Default Sorting Behavior

+ To better understand the sorted () function, look at documentation

help(sorted)

Help on built-in function sorted in module builtins:

sorted(iterable, /, *, |key=None, reverse=False)
Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

- An iterable is any object over which we can iterate (list, string, tuple, range)

- The optional parameter key specifies a function that determines how each
element should be compared to other elements

- The optional boolean parameter reverse (which by default is set to False)
allows us to sort In reverse order

+ Note:the . sort () list method also supports these options

Reverse Sorting

- Let's consider the optional reverse parameter to sorted()

- Sort sequences In reverse order by setting this parameter to be True

>>> fruits = [(12, 'apples'), (4, 'bananas'), (27, 'grapes')]
>>> sorted(fruits, reverse=True)

[(27, 'grapes'), (12, 'apples'), (4, 'bananas')]

>>> letters = ('a', 'c', 'z', 'b', 'Z', 'A")

>>> sorted(letters, reverse=True)

['z', 'c¢', 'b', 'a', 'zZ2', 'A']

>>> nums = (42, -20, 13, 10, 0, 11, 18)

>>> sorted(nums, reverse=True)

(42, 18, 13, 11, 10, 0, -20]

Sorting with a key Function

B) .0 = \ /e

Sorting with a kKey function

Now suppose we have a list of tuples that we want to sort by something
other than the first item

Example: A list of course tuples, where the first item Is the course name,
second item Is the enrollment cap, and third item is the term (Fall/Spring).

'CS136"', 60, 'Spring'),
'ECON233', 30, 'Fall'),

'STAT200', 50, 'Spring'),
'MATH110', 90, 'Spring')]

courses [('CS134"', 90, 'Spring'),
('AFR206', 30, 'Spring'),
('MUS112', 10, 'Fall'),
('PSYC201', 50, 'Fall'),

AN AN AN SN

Suppose we want to sort these courses by their capacity (second element)

» We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

Sorting with a kKey function

Defining a key function explicitly:

*+ We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def capacity(courseTuple):
'''"Takes a sequence and returns item at index 1'''
return courseTuple[1]

»+ Once we have defined this function, we can pass it as a key when
calling sorted()

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

Sorting with a kKey function

- Defining a key function explicitly:

*+ We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

def capacity(courseTuple):
'''"Takes a sequence and returns item at index 1'''
return courseTuple[1]
courses = [('CS134"', 90, 'Spring'), ('CS136', 60, 'Spring'),
('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),
('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
('PSYC201', 50, 'Fall'), ('"MATH110', 90, 'Spring')]

we can tell sorted() to sort by capacity instead
sorted(courses, key=capacity)

[('MUS112', 1@, 'Fall'),
'AFR206', 30, 'Spring'),
"ECON233', 30, 'Fall'),
'STAT200', 50, 'Spring'),
'PSYC201', 50, 'Fall'),
'CS136"', 60, 'Spring'),
'CS134"', 90, 'Spring'),
'MATH110', 90, 'Spring')]

AN AN N N N N N SN

Python Sorting Is Stable

Python's sorting functions are stab Le, which means that items that are
equal according to the sorting Key have the same relative order as in the
original sequence

courses [('CS134"', 90, 'Spring'), ('CS136', 60, 'Spring'),
('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),
('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),
('PSYC201', 50, 'Fall'), ('"MATH110', 90, 'Spring')]

def term(courseTuple):
'''"Takes a sequence and returns item at index 2'''
return courseTuple[2]

sorted(courses, key=term)
[('ECON233', 30, 'Fall'),
('MUS112', 10, 'Fall'),
('PSYC201', 50, 'Fall'),
('CS134"', 90, 'Spring'
('CS136"', 60, 'Spring'
(
(
(

)

_) Notice the ordering of courses with
'AFR206', 30, 'Spring')
)
)

'STAT200", 50, 'Spring’ Fall term and those with Spring term

'‘MATH110', 90, 'Spring’

lakeaways

- Tuples are a new immutable sequence that

- supports all sequence operations such as indexing and slicing

- are useful for argument unpacking, multiple assignments

- are useful for handling list-like data without aliasing issues

- sorted() function and .sort() list method sorts sequences in
ascending and lexicographic order by default

- We can override the default sorting behavior by supplying optional
parameters Key (function), and reverse (Boolean)

H D @ = \ /.
T IEEEINT

