
CS134:  
Tuples & Sorting

Announcements & Logistics
• HW 5 due Monday at 10pm - last HW before midterm
• Lab 4

• Part 1: Feedback returned this afternoon
• Part 2: Due next Wed/Thur at 10 pm

• Midterm reminder: Thur Oct 20: 6-7:30 pm and 8-9:30 pm
• Midterm review: Tue Oct 18: 8-9:30 pm

• Midterm practice problems will be released soon
• Student help hours for next week are now posted on webpage

• Lots of hours on Tue, Wed, and Thur!
• If the CS common room gets too crowded, we’ll move to TCL 217A/216

Student
Help Hours
Next Week

Looking Ahead
• No HW posted next week

• We’ll post practice midterm questions instead
• Lab on Oct 17/18

• Short lab on debugging strategies
• Start and finish during scheduled lab session!
• No need to start in advance

• Things to review in preparation for the midterm
• Review lab solutions and HW questions
• Review Jupyter notebooks and slides
• Discuss practice midterm questions

• No class on Fri Oct 21 (regardless of Mountain Day)

Last Time
• Learned about aliasing in Python

• Need to be careful with aliasing when using lists due to mutability

• Discussed ways to create "new" lists (true copies):

newList = myList[:] # slicing

newList = [el for el in myList] # list comprehension

• Discussed while loops

• Needed for ranked-choice voting on Lab 4 Part 2

def printHalves(n):

 while n > 0:

 print(n)

 n = n//2

printHalves(100)

Recap: Loops
1. Initialize a variable used in the test condition

2. Keyword that indicates the beginning of the loop

3. Test condition that causes the loop to end when False

4. Colon that indicates the end of the loop definition

5. Within the loop body (indented!), update the variable used in the test condition

Initialize a variable for test condition

Keyword for beginning of loop

Update test condition variable in loop body

Test condition causing loop to end

Colon

Today’s Plan
• Today we will discuss a new immutable sequence: tuples

• Revisit sorting and default sorting behavior
• Discuss how we can override the default sorting behavior

Tuples: An Immutable Sequence
• Tuples are an immutable sequence of values (almost like immutable

lists) separated by commas and enclosed within parentheses ()

string tuple 
>>> names = ("Jeannie", "Iris", "Lida")

int tuple 
>>> primes = (2, 3, 5, 7, 11)

singleton 
>>> num = (5,)

parentheses are optional 
>>> values = 5, 6

empty tuple 
>>> emp = ()

A tuple of size 1 is called a singleton.
Note the (funky) syntax.

• Tuples, like strings, support any sequence operation that does not
involve mutation: e.g,

• len() function: returns number of elements in tuple

• [] indexing: access specific element

• +, *: tuple concatenation

• [:]: slicing to return subset of tuple (as a new tuple)

• in and not in: check membership

• for loop: iterate over elements in tuple

Tuples as Immutable Sequences

Multiple Assignment and Unpacking
• Tuples support a simple syntax for assigning multiple values at once, and

also for "unpacking" sequence values

>>> a, b = 4, 7

reverse the order of values in tuple

>>> b, a = a, b

tuple assignment to “unpack” list elements

>>> cbInfo = ['Charlie Brown', 8, False]

>>> name, age, glasses = cbInfo

• Note that the preceding line is just a more concise way of writing:

>>> name = cbInfo[0]

>>> age = cbInfo[1]

>>> glasses = cbInfo[2]

Multiple Return from Functions
• Tuples come in handy when returning multiple values from functions

>>> arithmetic(10, 2)

(12, 20)

>>> type(arithmetic(3, 4))

<class 'tuple'>

multiple return values as a tuple

def arithmetic(num1, num2):

 '''Takes two numbers and returns the sum and product'''

 return num1 + num2, num1 * num2

Conversion between Sequences
• The functions tuple(), list(), and str() convert between sequences

>>> word = "Williamstown"

>>> charList = list(word) # string to list

>>> charList

['W', 'i', 'l', 'l', 'i', 'a', 'm', 's', 't', 'o', 'w', 'n']

>>> charTuple = tuple(charList) # list to tuple

>>> charTuple

('W', 'i', 'l', 'l', 'i', 'a', 'm', 's', 't', 'o', 'w', 'n')

>>> list((1, 2, 3, 4, 5)) # tuple to list

[1, 2, 3, 4, 5]

Conversion between Sequences
• The functions tuple(), list(), and str() convert between sequences

>>> str(('hello', ‘world')) # tuple to string

"('hello', ‘world')"

>>> numRange = range(12)

>>> list(numRange) # range to list

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

>>> str(list(numRange)) # range to list to string

'[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]'

• See Jupyter for more examples

Sorting Tuples & More

sorted()
• sorted() is a built-in Python function (not a method!) that takes a sequence

(string, list, tuple) and returns a new sorted sequence as a list

• By default, sorted() sorts the sequence in ascending order (for numbers)
and alphabetical (dictionary) order for strings

• sorted() does not alter the sequence it is called on and always returns the
type list

>>> nums = (42, -20, 13, 10, 0, 11, 18) # tuple of ints

>>> sorted(nums) # this returns a list!

[-20, 0, 10, 11, 13, 18, 42]

>>> letters = ('a', 'c', 'z', 'b', 'Z', ‘A')

>>> sorted(letters)

['A', 'Z', 'a', 'b', 'c', 'z']

• sorted(string) returns a sorted list of strings (or more
specifically, characters). It does not return a string!

>>> sorted("Iris")

['I', 'i', 'r', 's']

>>> sorted("Jeannie")

['J', 'a', 'e', 'e', 'i', 'n', 'n']

>>> sorted("*hello!*")

['!', '*', '*', 'e', 'h', 'l', 'l', 'o']

sorted()

Sorting Strings
• Strings are sorted based on the ASCII values of their characters
• ASCII stands for “American Standard Code for Information Interchange”

• Common character encoding scheme for electronic communication
(that is, anything sent on the Internet!)

• Special characters come first, followed by capital letters, then
lowercase letters

• Characters encoded using integers from 0-127
• Can use Python functions ord() and chr() to work with these:

• ord(str): takes a character and returns its ASCII value as int
• chr(int): takes an ASCII value as int and returns its

corresponding character (str)

DO NOT MEMORIZE!

An aside: sort() vs sorted()
• .sort() method is only for lists and sorts by mutating the list in

place; invoked using dot notation

• sorted() function can be used to sort any sequence (strings, lists,
tuples). It always returns a new sorted list, and does NOT modify
the original sequence

Example:

list1 = [6, 3, 4]; list2 = [6, 3, 4]

list1.sort() # sort list1 by mutating values

sorted(list2) # returns a *new* sorted list

[3, 4, 6][6, 3, 4]

list1	Before list1	After list2	Before list2	After

[6, 3, 4] [6, 3, 4]

Does not change!

• Sorting a list of (or a tuple of) tuples with sorted() sorts elements in
ascending order by their first item

• If there is a tie, Python breaks the tie by comparing the second items

• If the second items are also tied, it compares the third items, and so on

>>> fruits = [(12, ‘apples'), (4, 'bananas'), (27, 'grapes')]

>>> sorted(fruits)

[(4, ‘bananas'), (12, 'apples'), (27, 'grapes')]

>>> pairs = [(4, 5), (0, 2), (12, 1), (11, 3)]

>>> sorted(pairs)

[(0, 2), (4, 5), (11, 3), (12, 1)]

• Note: The same is true for lists and lists of lists

• This sorting behavior is referred to as lexicographical sorting

Sorting Tuples and Lists

• Sorting a list of (or a tuple of) tuples with sorted() sorts elements in
ascending order by their first item

• If there is a tie, Python breaks the tie by comparing the second items

• If the second items are also tied, it compares the third items, and so on

>>> triples = [(1, 2, 3), (2, 2, 1), (1, 2, 1)]

>>> sorted(triples)

[(1, 2, 1), (1, 2, 3), (2, 2, 1)]

>>> chars = [(8, 'a', '$'), (8, 'a', '!'), (7, 'c', '@')]

>>> sorted(chars)

[(7, 'c', '@'), (8, 'a', '!'), (8, 'a', '$')]

Question: How do we sort based on the second/third item in tuples?  
Or sort in reverse order?

Sorting Tuples and Lists

Changing the Default Sorting Behavior
• To better understand the sorted() function, look at documentation

• An iterable is any object over which we can iterate (list, string, tuple, range)

• The optional parameter key specifies a function that determines how each
element should be compared to other elements

• The optional boolean parameter reverse (which by default is set to False)
allows us to sort in reverse order

• Note: the .sort() list method also supports these options

Reverse Sorting
• Let’s consider the optional reverse parameter to sorted()

• Sort sequences in reverse order by setting this parameter to be True
>>> fruits = [(12, 'apples'), (4, 'bananas'), (27, 'grapes')]

>>> sorted(fruits, reverse=True)

[(27, 'grapes'), (12, 'apples'), (4, 'bananas')]

>>> letters = ('a', 'c', 'z', 'b', 'Z', 'A')

>>> sorted(letters, reverse=True)

['z', 'c', 'b', 'a', 'Z', 'A']

>>> nums = (42, -20, 13, 10, 0, 11, 18)

>>> sorted(nums, reverse=True)

[42, 18, 13, 11, 10, 0, -20]

Sorting with a key Function

Sorting with a key function
• Now suppose we have a list of tuples that we want to sort by something
other than the first item

• Example: A list of course tuples, where the first item is the course name,
second item is the enrollment cap, and third item is the term (Fall/Spring).

• Suppose we want to sort these courses by their capacity (second element)

• We can accomplish this by supplying the sorted() function with a key
function that tells it how to compare the tuples to each other

courses = [('CS134', 90, 'Spring'), ('CS136', 60, 'Spring'),

 ('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),

 ('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),

 ('PSYC201', 50, 'Fall'), ('MATH110', 90, 'Spring')]

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to

• Once we have defined this function, we can pass it as a key when
calling sorted()

def capacity(courseTuple):

 '''Takes a sequence and returns item at index 1'''

 return courseTuple[1]

we can tell sorted() to sort by capacity instead

sorted(courses, key=capacity)

Sorting with a key function
• Defining a key function explicitly:

• We can define an explicit key function that, when given a tuple,
returns the parameter we want to sort the tuples with respect to
def capacity(courseTuple):

 '''Takes a sequence and returns item at index 1'''

 return courseTuple[1]

we can tell sorted() to sort by capacity instead

sorted(courses, key=capacity)

courses = [('CS134', 90, 'Spring'), ('CS136', 60, 'Spring'),

 ('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),

 ('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),

 ('PSYC201', 50, 'Fall'), ('MATH110', 90, 'Spring')]

[('MUS112', 10, 'Fall'),

 ('AFR206', 30, 'Spring'),

 ('ECON233', 30, 'Fall'),

 ('STAT200', 50, 'Spring'),

 ('PSYC201', 50, 'Fall'),

 ('CS136', 60, 'Spring'),

 ('CS134', 90, 'Spring'),

 ('MATH110', 90, 'Spring')]

Python Sorting is Stable
• Python's sorting functions are stable, which means that items that are

equal according to the sorting key have the same relative order as in the
original sequence

Notice the ordering of courses with
Fall term and those with Spring term

courses = [('CS134', 90, 'Spring'), ('CS136', 60, 'Spring'),

 ('AFR206', 30, 'Spring'), ('ECON233', 30, 'Fall'),

 ('MUS112', 10, 'Fall'), ('STAT200', 50, 'Spring'),

 ('PSYC201', 50, 'Fall'), ('MATH110', 90, 'Spring')]

def term(courseTuple):

 '''Takes a sequence and returns item at index 2'''

 return courseTuple[2]

sorted(courses, key=term)

[('ECON233', 30, 'Fall'),

 ('MUS112', 10, 'Fall'),

 ('PSYC201', 50, 'Fall'),

 ('CS134', 90, 'Spring'),

 ('CS136', 60, 'Spring'),

 ('AFR206', 30, 'Spring'),

 ('STAT200', 50, 'Spring'),

 ('MATH110', 90, 'Spring')]

Takeaways
• Tuples are a new immutable sequence that

• supports all sequence operations such as indexing and slicing

• are useful for argument unpacking, multiple assignments

• are useful for handling list-like data without aliasing issues

• sorted() function and .sort() list method sorts sequences in
ascending and lexicographic order by default

• We can override the default sorting behavior by supplying optional
parameters key (function), and reverse (Boolean)

The	end!

