
CS134:
Aliasing & While Loops

Announcements & Logistics
• HW 5 due Mon at 10 pm

• Last one before midterm! This one is a little tricky!
• Lab 4 Part 1 due today/tomorrow at 10pm

• We’ll send automated feedback about Part 1 on Friday
• Part 2 due next Wed/Thur at 10 pm
• Lab “style suggestions” posted (see Friday on calendar)

• Student help hours during Reading Days:
• XXX

• Midterm reminder: Thur Oct 20: 6 - 7:30 pm or 8 - 9:30 pm
• Midterm review: Tue Oct 18: 8 - 9:30 pm

Do You Have Any Questions?

Last Time
• Reviewed useful list methods:

• All of these methods modify/mutate the list:

• .append(), .extend(),
.insert(), .remove(), .pop(), .sort()

• Started discussion on mutability and aliasing in Python

Today’s Plan
• Continue discussing aliasing and mutability in Python
• Discuss while loops

• Needed for ranked-choice voting on Lab 4 Part 2

Mutability & Aliasing

Recap: Value vs Identity
• An object’s identity never changes once it has been created

• The id() function returns an object’s identity (or address)

• Compare with is operator

• An object’s value is the value assigned to the object when it is created

• Objects whose values can change are mutable; objects whose values
cannot change are called immutable

• Compare with == operator 5

num

id: 4486937008
value: 5

Variable names like num point to memory
addresses of stored value

Memory address
>>> num = 5
>>> id(num)
4486937008

Strings are Immutable

Attempts to change an immutable object creates a new object

'Williams'

word college

'Amherst'

>>> word = "Williams"
>>> college = word
>>> word == college
True

>>> print(id(word), id(college))
4518582576 4518582576

>>> word is college
True

>>> word = "Amherst"
>>> print(id(word), id(college))
4518871920 4518582576

>>> word is college
False

id: mem addr (4518582576)

Even though word and college
initially have the same identity and
value, if we update one of them, it

just assumes a new identity!

Lists are Mutable

[1, 2, 3]

myList

[1, 2, 3, 4]

myList

Value of list objects can change, keeping identity the same

Note: Value changes, identity
stays the same

>>> myList = [1, 2, 3]
>>> id(myList)
4418551104

>>> myList.append(4)
>>> id(myList)
4418551104

Mutability in Python

• Once you create them, their value cannot be changed!
• All functions and methods that manipulate these objects return a new object and

do not modify the original object

• List values can be changed
• Sequence operators and functions return a new list; do not modify the original list
• List methods modify what’s in a list
• The mutability of lists has many implications such as aliasing

• Aliasing happens when the value of one variable is assigned to another variable
• Can have multiple names for the same object!

Lists are Mutable

Strings, Ints, Floats are Immutable

List Aliasing
A side effect of mutability

List Aliasing
• Any assignment or operation that creates a new name for an existing

object implicitly creates an alias (a new name)
• Because list objects can change, this leads to some unusual aliasing

side effects

[1, 2, 3]

list1 list2

We are not creating a separate copy, but rather creating a second
name for the original list; list2 is an alias of list1

>>> list1 = [1, 2, 3]
>>> list2 = list1

>>> list1 is list2
True

• Unlike immutable objects (recall our string example with word and
college) , changing the value of list1 will also change the
value of list2:

• They are two names for the same list!

[1, 2, 3, 4]

list1 list2

List Aliasing

>>> list1 = [1, 2, 3]
>>> list2 = list1

>>> list1 is list2
True

>>> list1.append(4)
>>> list2

[1, 2, 3, 4]

• An assignment to a new variable creates a new list

[1, 2, 3]

list1

[1, 2, 3]

myList

list2

List Aliasing

>>> list1 = [1, 2, 3]
>>> list2 = list1
>>> myList = [1, 2, 3]

>>> # same values?
>>> myList == list1 == list2

>>> # same identities?
>>> myList is list1

True

False

>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words.append("sky")
>>> mixed

(Crazy) Aliasing Examples

???

[23, 19]

nums

words

['hello', 'world']

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples
>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

[23, 19]

nums

['hello', 'world', 'sky']

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples

words

>>> words.append("sky")

(Crazy) Aliasing Examples
>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words.append("sky")
>>> mixed
[12, [23, 19], 'nice', ['hello', 'world', 'sky']]

>>> mixed[1].append(27)

???

[23, 19, 27]

nums

['hello', 'world', 'sky']

[12, , 'nice',]

mixed

(Crazy) Aliasing Examples

words

>>> mixed[1].append(27)

(Crazy) Aliasing Examples
>>> nums = [23, 19]
>>> words = ["hello", "world"]
>>> mixed = [12, nums, "nice", words]

>>> words.append("sky")
>>> mixed
[12, [23, 19], 'nice', ['hello', 'world', 'sky']]

>>> mixed[1].append(27)
>>> nums
[23, 19, 27]
>>> mixed
[12, [23, 19, 27], 'nice', ['hello', 'world', 'sky']]

Conclusion
• We cannot change the value of immutable objects such as strings

• Attempts to modify the object ALWAYS creates a new object

• We can change the value of mutable objects such as lists

• Need to be mindful of aliasing; be careful to avoid unintended aliases

• You can create a “true” copy of a list using slicing or a list comprehension
newList = myList[:]
newList = [ele for ele in myList]

• A (confusing) aside: When using the += operator with lists, it actually
calls .append()! (Use myList = myList + [element]
if you want to avoid mutation.)

While Loops

For loops in Python
• For loops in Python are meant to iterate directly over a fixed sequence

of items
• No need to know the sequence's length ahead of time

• Interpretation of for loops in Python:

 for each item in given sequence:
 (do something with item)

• Other programming languages (like Java) have for loops that require you
to explicitly specify the length of the sequence or a stopping condition

• Thus Python for loops are sometimes called “for each” loops
• Takeaway: For loops in Python are meant to iterate directly over each

item of a given iterable object (such as a sequence)

What If We Don’t Know When to Stop?
• Stopping condition of for loop: no more elements in sequence

• What if we don’t know when to stop?
• Suppose you had to write a program to ask a user to enter a

name, repeatedly, until the user enters “quit”, in which case you
stop asking for input and print “Goodbye"

["A", "chilly", "autumn", "day"]

While Loops
• For loops iterate over a pre-determined sequence and stop at the end of the

sequence

• On the other hand, while loops are useful when we don't know in advance

when to stop

• while loop syntax:
while (boolean expression evaluates to true):
 # keep repeating the following
 # statements in loop body
 # as long as the loop condition is true

• A while loop will keep iterating as long as the condition in the parentheses is

satisfied (is true) and will halt when the condition fails to hold (becomes false)

While Loop Example
• Example of a while loop that depends on user input

prompt = "Please enter a name (type quit to exit): "
name = input(prompt)

while (name.lower() != "quit"):
 print("Hi,", name)
 name = input(prompt)
print("Goodbye")

• See notebook for example tests of this piece of code

While Loop to Print Halves
• Given a number, keep dividing it until it becomes smaller than 0 and

print all the “halves”

100
50
25
12
6
3
1

def printHalves(n):
 while n > 0:
 print(n)
 n = n//2

printHalves(100)

def printHalves(n):
 while n > 0:
 print(n)
 n = n//2

printHalves(100)

Infinite loop! Indentation matters!

def computeSum():
sum = 0
while True:

prompt = "Please enter a positive number: "
num = int(input(prompt))
if num < 0:

 return sum
 sum += num
if __name__ == "__main__":
print("The sum is", computeSum())

Infinite Loops
• Most of the time, you want to avoid an unintentional infinite loop

• Infinite loops occur when the loop condition never turns false
• Occasionally, as in Lab 4, you create an intentional infinite loop

• This is ok (and sometimes desirable!) as long as there is a way to exit
the loop

• A return statement will force the loop to exit

Be careful with infinite loops!

Return if a negative value is provided

The	end!

