
CS134:

Lists & Mutability

Announcements & Logistics
• HW 4 due tonight at 10pm

• Lab 4 today/tomorrow

• Part 1 due Wed/Thur at 10pm
• We will run some tests and return automated feedback

• Part 2 is due next week (but there is no lab next week!)
• We’ll provide info on students help and TA hours during reading

days on Wed (since Friday could be Mountain Day)

Do You Have Any Questions?

Last Time
• Learned about list comprehensions and accessing lists of lists

• Used our knowledge about lists and loops to analyze “interesting”
properties of our student data

• Focused on maintaining the state of variables when looping,
and how to update state based on conditionals

• Example functions: characterList, yearList

Today’s Plan
• Learn how to find max/min values in a list (when we can’t use

the min() and max() functions)
• Review old and new list methods that modify the list:

• .append(), .extend(),
.insert(), .remove(), .pop(), .sort()

• Discuss implications of mutability in Python in more detail

Exercise: Student Fun Facts!
• Write a function mostVowels that can be used to compute the list

of students with the most vowels in their first name. (Hint: use
countVowels() which returns the number of vowels in a string.)

• General strategy for finding max in list of lists?
• Initialize a max value BEFORE the loop to a very small number
• If you see a value bigger than max while looping, update max

Exercise: Student Fun Facts!
• Write a function mostVowels that can be used to compute the list

of students with the most vowels in their first name. (Hint: use
countVowels() which returns the number of vowels in a string.)

•

Exercise: Student Fun Facts!
• Write a function leastVowels that can be used to compute the

list of students with the least vowels in their first name. (Hint: use
countVowels() again.)

List Mutability
A quick review of old and new methods that modify a list:

 .append(), .extend(),
.pop(), .insert(), .remove(), .sort()

Direct Modification: Element Assignment

myList[index] = item : though not a method, an assignment
to a specific index can modify a list directly (this won’t work using strings!)

Example.

myList[1] = 7 # assign 7 to index 1 of myList

[1, 2, 3, 4] [1, 7, 3, 4]

myList		Before myList		After

append()
myList.append(item) : appends item to end of list

Example.

myList.append(5) # insert 5 at the end of the list

[1, 7, 3, 4] [1, 7, 3, 4, 5]

myList		Before myList		After

extend()
myList.extend([itemList]) : appends all the items in
itemList to the end of myList.

Example.

myList.extend([6, 8]) # insert both 6 and 8 at
the end of the list

[1, 7, 3, 4, 5] [1, 7, 3, 4, 5, 6, 8]

myList		Before myList		After

pop()
myList.pop(index) : Removes the item at a given index
(int) and returns it. If no index is given, by default, pop() removes
and returns the last item from the list.

Example.

val = myList.pop(3) val = 4

[1, 7, 3, 4, 5, 6, 8] [1, 7, 3, 5, 6, 8]

returns

myList		Before myList		After

pop()
myList.pop(index) : Removes the item at a given index
(int) and returns it. If no index is given, by default, pop() removes
and returns the last item from the list.

Example.

val = myList.pop() val = 8

No Index

[1, 7, 3, 5, 6, 8] [1, 7, 3, 5, 6]

returns

myList		Before myList		After

insert()
myList.insert(index, item) : inserts item at index (int)
in myList, all items to the right of index shift over to make room

Example.

myList.insert(0,11) # insert 11 at index 0

[11, 1, 7, 3, 5, 6][1, 7, 3, 5, 6]

myList		Before myList		After

insert()
myList.insert(index, item) : inserts item at index (int)
in myList, all items to the right of index shift over to make room

Example.

myList.insert(10,12) # insert 12 at index 10

[11, 1, 7, 3, 5, 6, 12]

inserting at an index out of range

[11, 1, 7, 3, 5, 6]

myList		Before myList		After

remove()
myList.remove(item) : removes first occurrence of item from
myList, all items to the right of removed item shift to the left by one

(Unlike pop(), item is not returned!)

Example.

myList.remove(12) # remove 12 from myList

[11, 1, 7, 3, 5, 6][11, 1, 7, 3, 5, 6, 12]

myList		Before myList		After

DO NOT USE remove() IN LAB 4!!!!!!

DO NOT USE
.remove()
IN LAB 04!

sort()
myList.sort() : sorts the list in place in ascending order

Example.

myList.sort() # sort by mutating myList

[1, 3, 5, 6, 7, 11][11, 1, 7, 3, 5, 6]

myList	Before myList	After

Identity and Value

Value vs Identity
• Python is an object oriented language: everything is an object!

• An object’s identity never changes once it has been created; think of it
as the object’s address in memory

• The id() function returns an integer representing an object’s
identity (or address)

• An object’s value is the value assigned to the object when it is created

5

num

identity: mem address
where 5 is stored

value: 5

>>> num = 5
>>> id(num)
4486937008

Value vs Identity
• An object’s identity never changes once it has been created; think of it

as the object’s address in memory

• On the other hand, an object’s value can change

• Objects whose values can change are called mutable; objects whose
values cannot change are called immutable

5

num

id: 4486937008

Variable names like num point to memory
addresses of stored value

Memory address
>>> num = 5
>>> id(num)
4486937008

• The == operator compares the value of an object (i.e., are the
contents of the objects the same?)

• The is operator compares the identity of two objects (i.e., do they
have the same memory address?)

• var1 is var2 is equivalent to id(var1) == id(var2)

Comparing Value vs Identity

5

num

id: 4486937008

Variable names like num point to memory
addresses of stored value

Memory address
>>> num = 5
>>> id(num)
4486937008

Mutability in Python

• Once you create them, their value cannot be changed!
• All functions and methods that manipulate these objects return a new

object and do not modify the original object

• List values can be changed
• We just reviewed how we can mutate/change what’s in a list using

methods; these methods modify original list
• If we use sequence operators on lists, these functions and operations

return a new list and do not modify the original list

Lists are Mutable

Strings, Ints, Floats are Immutable

Ints, Floats are Immutable
5

num

id: 4486937008

Has the identity of num
changed?

Attempts to change an immutable object create a new object

>>> num = 5
>>> id(num)
4486937008

>>> num = num + 1
>>> id(num)

5

num

5

6num

id: 4486937008

id: 4486937008

id: 4486937040

Identity of ints cannot be changed,
num assumes a new identity

Attempts to change an immutable object create a new object

Ints, Floats are Immutable
>>> num = 5
>>> id(num)
4486937008

>>> num = num + 1
>>> id(num)
4486937040

Strings are Immutable

Even though word and college have
the same identity and value, if we

update one of them, it just assumes
a new identity!

'Williams'

word college

Attempts to change an immutable object create a new object

id: mem addr (4518582576)

Variable names point to memory
addresses of stored value

>>> word = "Williams"
>>> college = word
>>> word == college
True

>>> print(id(word), id(college))
4518582576 4518582576

>>> word is college
True

Strings are Immutable

Attempts to change an immutable object create a new object

'Williams'

word college

'Amherst'

>>> word = "Williams"
>>> college = word
>>> word == college
True

>>> print(id(word), id(college))
4518582576 4518582576

>>> word is college
True

>>> word = "Amherst"
>>> print(id(word), id(college))
4518871920 4518582576

>>> word is college
False

Strings are Immutable

Even though we created word and
college separately, they still point to
the same memory address. This is a
(confusing) optimization in Python.

'Williams'

word college

Immutable objects that are == also share an identity

id: mem addr (4518582576)

Variable names point to memory
addresses of stored value

>>> word = "Williams"
>>> college = "Williams"
>>> word == college
True

>>> print(id(word), id(college))
4518582576 4518582576

>>> word is college
True

String Methods/Operations Return New Strings

• String methods like .lower(), .upper() return a
new string

• Sequence operations, like slicing [:], return new sequences

 'sally'

name

>>> name = "sally"
>>> id(name)
4574657776

• String methods like .lower(), .upper() return a
new string

• Sequence operations, like slicing [:], return new sequences

name

'all'

String Methods/Operations Return New Strings

>>> name = "sally"
>>> id(name)
4574657776

>>> name = name[1:4]
>>> id(name)
4574684720

 'sally'

Sequence Operations Return New Sequences

• The following operations, that can be performed on both
lists and strings, and always return a new list/string

• [::] slicing operator: returns a new sliced sequence
• assignment of a new sequence to a variable

• names = 'Iris and Jeannie'
• myList = [1, 2, 3]

• concatenation (+) always creates a new sequence

Lists are Mutable

[1, 2, 3]

myList

[1, 2, 3, 4]

myList

Value of list objects can change, keeping identity the same

Note: Value changes, identity
stays the same

>>> myList = [1, 2, 3]
>>> id(myList)
4418551104

>>> myList.append(4)
>>> id(myList)
4418551104

More on this next time!

The	end!

Lab 4

Lab 4 Goals
• In Lab 4 you will implement several voting algorithms and helpful

functions for manipulating election data

• Lab 4 will give you experience with :
• Lists of strings
• Lists of lists of strings
• Loops
• Using string and list methods
• File reading

• Pay close attention to expected input (lists of strings, list of lists of strings,
etc) and expected output

Ballot Data
• Ballot data is represented in various text files
• Each line represents a single voter’s ranked choices

different types of coffee
filename = "csv/coffee.csv"
with open(filename) as coffeeTypes:

allCoffee = []
for coffee in coffeeTypes:

allCoffee.append(coffee.strip().split(‘,'))
print(allCoffee)

Working with Ballot Data

You’ll use string and list methods to
process the data and implement several

different voting algorithms

>>> allCoffee[1] # access second inner list
['kona', 'house', 'ambrosia', 'wonderbar', 'dickason']

>>> allCoffee[0][1] # access second element in first inner list
'dickason'

>>> # access second character of second element of first inner list
>>> allCoffee[0][1][1]
'i'
>>> # create a list of only last elements of inner lists
>>> lastCoffee = [coffee[-1] for coffee in allCoffee]
>>> lastCoffee

Remember
mostVowels(..) and
leastVowels(..)
from lecture!

The	end!

