CS |34

Lists & Mutability

H D @ = N

Announcements & Logistics

HW 4 due tonight at |0pm
Lab 4 today/tomorrow
Part | due Wed/Thur at |0pm
We will run some tests and return automated feedback
Part 2 s due next week (but there is no lab next week!)

We'll provide info on students help and TA hours during reading
days on Wed (since Friday could be Mountain Day)

Do You Have Any Questions?

Last [Ime

Learned about list comprehensions and accessing lists of lists

Used our knowledge about lists and loops to analyze “interesting”
properties of our student data

Focused on maintaining the state of variables when looping,
and how to update state based on condritionals

Example functions: characterList, yearList

Joday's Plan

* Learn how to find max/min values in a list (when we can't use
the min() and max() functions)

 Review old and new list methods that modify the list:

+ .append(), .extend(),
.insert(), .remove(), .pop(), .sort()

* Discuss implications of mutability in Python in more detall

Exercise: Student Fun Facts!

Write a function mostVowe s that can be used to compute the list
of students with the most vowels In their first name. (Hint: use

countVowels() which returns the number of vowels in a string,)

def mostVowels(wordList):

'"'"'"Takes a list of strings wordList and returns a list
of strings from wordList that contain the most # vowels''

General strategy for finding max in list of lists!
Initialize a max value BEFORE the loop to a very small number

If you see a value bigger than max while looping, update max

Exercise: Student Fun Facts!

+ Write a function mostVowe Ls that can be used to compute the list
of students with the most vowels In their first name. (Hint: use
countVowels() which returns the number of vowels in a string,)

* def mostVowels(wordList):
'"'"'"Takes a list of strings wordList and returns a list
of strings from wordList that contain the most # vowels'''
maxSoFar = 0 # initialize counter
result = []
for word in wordList:
count = countVowels (word)
if count > maxSoFar:
update: found a better word
maxSoFar = count
result = [word]

elif count == maxSoFar:
result.append(word)
return result

which student(s) has most vowels in their name?
mostVowelNames = mostVowels(firstNames)
mostVowelNames

['Genevieve', 'Maximilian']

Exercise: Student Fun Facts!

Write a function LeastVowe Ls that can be used to compute the
list of students with the least vowels in their first name. (Hint: use
countVowels () again.)

def leastVowels(wordList):
'"'"'"Takes a list of strings wordList and returns a list
of strings in wordList that contain the least number of vowels
minSoFar = len(wordList[0]) # initialize counter
result = []
for word in wordList:
count = countVowels (word)
if count < minSoFar:
update: found a better word
minSoFar = count
result = [word]

elif count == minSoFar:
result.append(word)
return result

leastVowels (firstNames)

[‘R]', 'C.]3."', 'M']

List Mutability

A quick review of old and new methods that modify a list:

.append(), .extend(),

.pop(), .insert(), .remove(), .sort()

Direct Modification: Element Assisgnment

myList[1ndex] = i1tem : though not a method, an assignment
to a specific iIndex can modify a list directly (this won't work using strings!)

Example.

myList[1l] = 7 # assign 7 to index 1 of mylList

myL1st Before myList After

[1, 2, 3, 4] [1, 7, 3, 4]

append()

myList.append(item) : appends item to end of list
Example.

myList.append(5) # insert 5 at the end of the list

myL1st Before myList After

[1, 7, 3, 4] [1, 7, 3, 4, 5]

extend()

myList.extend([1temList]) : appends all the items in
1temList to the end of myL1st.

Example.

myList.extend([6, 8]) # insert both 6 and 8 at
the end of the list

myL1st Before myList After

1, 7, 3, 4, 5] 1, 7, 3, 4, 5, 6, &]

slelel§)

myList.pop(index) : Removes the item at a given index

(int) and returns it. If no index is given, by default, pop () removes
and returns the last item from the list.

Example.
. returns
val = mylList.pop(3) » val = 4
myL1st Before myList After

[1, 7’ 3) 4, 5, 6) 8] I:l) 7, 3, 5) 6, 8:|

slelel§)

myList.pop(index) : Removes the item at a given index

(int) and returns it. If no index is given, by default, pop () removes
and returns the last item from the list.

Example. No Index
returns
val = myList.pop() » val = 8
myL1st Before myList After

[1, 7, 3, 5, 6, 8] [1, 7’ 3, 5, 6]

insert()

myList.1insert(index, i1tem) : insertsitem atindex (int)
inmyL1st, all items to the right of index shift over to make room

Example.

myList.insert(0,11) # insert 11 at index 0

myL1st Before myList After

[1, 7) 3, 5, 6] [11, 1, 7’ 3, 5, 6]

insert()

myList.1insert(index, i1tem) : insertsitem atindex (int)
inmyL1st, all items to the right of index shift over to make room

inserting at an index out of range

Example.

myList.insert(10,12) # insert 12 at index 10

myL1st Before myL1ist After

[11, 1, 7, 3, 5, 6] [11, 1, 7, 3, 5, 6, 12]

remove()

myList.remove(item) : removes first occurrence of item from
myL1ist, all items to the right of removed item shift to the left by one

(Unlike pop(), item Is not returned!)

Example.

myList.remove(12) # remove 12 from mylList

myL1st Before myList After

[11, 1, 7, 3, 5, 6, 12] [11, 1, 7, 3, 5, 6]

DO NOT USE
.remove()
IN LAB 04!

sort()

myList.sort() : sortsthe listin place in ascending order

Example.

myList.sort() # sort by mutating myList

myL1st Before myL1st After

[11, 1, 7, 3, 5, 6] [1, 3, 5, 6, 7, 11]

ldentity and Value

= <4 X;o' 0 \ g‘:mb‘o

Value vs |dentity

- Python Is an object oriented language: everything is an object!

- An object’s identity never changes once It has been created; think of it

as the object’s address in memory

- The id() function returns an integer representing an object’s

identity (or address)

- An object’s value is the value assigned to the object when It is created

>>> num = 5
>>> id(num) identity: mem address
4486937008 where 5 is stored

num
value: 5

Value vs |dentity

- An object’s identity never changes once It has been created; think of it

as the object’s address in memory
+ On the other hand, an object’s value can change

- Objects whose values can change are called mutable; objects whose

values cannot change are called immutable

>>> num = 5 1d: 4486937008
>>> id(num) Memory address
4486937008 num

Variable names like hum point to memory
addresses of stored value

Comparing Value vs Identity

- The == operator compares the value of an object (i.e,, are the
contents of the objects the same!)

+ The 1S operator compares the identity of two objects (i.e., do they
have the same memory address?)

- varl is var2isequivalentto id(varl) == id(var2)
>>> num 5 id: 4486937008
>>> id(num)

Memory address

4486937008 num

Variable names like hum point to memory
addresses of stored value

Mutabllity in Python

Strings, Ints, Floats are Immutable

Once you create them, their value cannot be changed!

All functions and methods that manipulate these objects return a new

object and do not modify the original object

Lists are Mutable

List values can be changed

We just reviewed how we can mutate/change what's in a list using
methods; these methods modify original list

f we use sequence operators on lists, these functions and operations
return a new list and do not modify the original list

Ints, Floats are Immutable

>>> Nnum 5
>>> id(num)
4486937008 id: 4486937008

>>> num = num + 1 num

>>> id(num)

Has the identity of num
changed!?

Attempts to change an immutable object create a new object

Ints, Floats are Immutable

>>> Nnum 5
>>> id(num)

4486937008 id: 4486937008
>>> num = num + 1 num

>>> 1d(num)

4486937040 id: 4486937008

ldentity of ints cannot be changed,

num assumes a new identity
num _>®

id: 4486937040

Attempts to change an immutable object create a new object

Strings are Immutable

>>> word "Williams" 1d: mem addr (4518582576)
>>> college = word

>>> word college

True

>>> print(id(word), id(college))

4518582576 4518582576

>>> word 1s college

word college
True

Variable names point to memory
addresses of stored value

Even though word and college have
the same identity and value, if we
update one of them, it just assumes
a new identity!

Attempts to change an immutable object create a new object

Strings are Immutable

>>> word "Williams"

>>> college = word

>>> word college

True

>>> print(id(word), id(college))

4518582576 4518582576

>>> word 1s college word college
True

>>> word "Amherst"

>>> print(id(word), id(college))
4518871920 4518582576

>>> word is college
False

Attempts to change an immutable object create a new object

Strings are Immutable

os> word = "Williams" id: mem addr (4518582576)
>>> college "Williams"

>>> word college

True

>>> print(id(word), id(college))

4518582576 4518582576

>>> word is college

word college
True

Variable names point to memory
addresses of stored value

Even though we created word and
college separately, they still point to
the same memory address. This is a
(confusing) optimization in Python.

Immutable objects that are == also share an identity

String Methods/Operations Return New Strings

» String methods like « lower(), .upper() returna
new string

- Sequence operations, like slicing [], return new sequences

>>> name "sally"
>>> id(name)
4574657776

name

String Methods/Operations Return New Strings

» String methods like « lower(), .upper() returna
new string

- Sequence operations, like slicing [], return new sequences

>>> name "sally"
>>> id(name)
4574657776

>>> name = name[1:4]
>>> jid(name)
41574684720

name

Sequence Operations Return New Seguences

The following operations, that can be performed on both
lists and strings, and always return a new list/string

[::] slicing operator: returns a new sliced sequence
assiscnment of a new sequence to a variable

y names = 'Iris and Jeannle'

. myList = [1, 2, 3]

concatenation (+) always creates a new sequence

Lists are Mutable

>>> myList [1, 2, 3]
>>> jd(myList)
4418551104

>>> myList.append(4)
>>> 1d(myList) mylList
4418551104

Note: Value changes, identity
stays the same

More on this next time! mylList

Value of list objects can change, keeping identity the same

H D @ = \ /.
T IEEEINT

Lab 4

B) ..@ m \ /R

Lab 4 Goals

In Lab 4 you will implement several voting algorithms and helpful
functions for manipulating election data

Lab 4 will give you experience with :
Lists of strings
Lists of lists of strings
Loops
Using string and list methods

File reading

Pay close attention to expected input (lists of strings, list of lists of strings,
etc) and expected output

Ballot Data

Ballot data is represented in various text files

Each line represents a single voter's ranked choices

different types of coffee
filename = "csv/coffee.csv"
with open(filename) as coffeeTypes:
allCoffee = []
for coffee in coffeeTypes:
allCoffee.append(coffee.strip().split(‘,"))
print(allCoffee)

“[['kona', 'dickason', 'ambrosia', 'wonderbar', 'house'],
= ['kona', 'house', 'ambrosia', 'wonderbar', 'dickason'],
['kona', 'ambrosia', 'dickason', 'wonderbar', 'house'],
['kona', 'ambrosia', 'wonderbar', 'dickason', 'house'],
['"house', 'kona', 'dickason', 'wonderbar', 'ambrosia'],
['kona', 'house', 'dickason', 'ambrosia', 'wonderbar'],
['kona', 'house', 'dickason', 'ambrosia', 'wonderbar'],
['dickason', 'ambrosia', 'wonderbar', 'kona', 'house'],
['"house', 'kona', 'ambrosia', 'dickason', 'wonderbar'],
['ambrosia', 'house', 'wonderbar', 'kona', 'dickason'],
['wonderbar', 'ambrosia', 'kona', 'house', 'dickason'],
['"house', 'wonderbar', 'kona', 'ambrosia', 'dickason']]

Working with Ballot Data

>>> gllCoffee[l] # access second inner 1list
['kona', 'house', 'ambrosia', 'wonderbar', 'dickason']

>>> agllCoffee[0] [1] # access second element in first inner Tlist
'dickason’

>>> # access second character of second element of first inner 1list

>>> allCoffee[0] [1] [1]
"1

>>> # create a list of only last elements of inner lists
>>> lastCoffee = [coffee[-1] for coffee in allCoffee]
>>> lastCoffee

['house',

'dickason’, You'll use string and list methods to
:Eouse: ' process the data and implement several
ouse',

e different voting algorithms

'wonderbar',
'wonderbar',
'house’',
'wonderbar',
'dickason’,
'dickason’,
'dickason’]

Remember

mostVowels(..) and
leastVowels(..)

from lecture!

H D @ = \ /.
T IEEEINT

