CS1 34
Nested Lists & Comprehensions

H D @ = N

Announcements & Logistics

Homework 4 is out on GLOW, due Monday at 10 pm
Lab 4 will be released today: has two parts!

Part | is due Wed/Thur (Oct 5/6) at 10 pm

Part 2 is due the following Wed/Thur (Oct 12/13) at |0 pm (after reading days!)
Final exam: Friday Dec 16 at 9:30 am

Midterm exam: Thur Oct 20 evening exam (more details forthcoming
regarding format)

Time Option |: 6 pm = 7:30 pm in Wege (TCL 123)
Time Option 2.8 pm = 9:30 pm in Wege (TCL 123)
TCL 206 for reduced distractions/extra time

Let us know asap If you have any class conflicts or need additional
accommodations

Extra time accommodations should plan to start at 6pm if possible

Last [Ime

Discussed file reading using lists and strings

Used string methods . strip(), .split()

Used list methods .append(), .extend(), .count()
Learned about ranges (another sequence in Python)

simple for loop that prints numbers 1-10
for i in range(1, 11):
print(i)

= O 00 N O Ul & WIN =

Joday's Plan

Learn about list comprehensions as a way to simplify list accumulations
Leads to simpler, more succinct code
Begin exploring lists of lists

Use our knowledge about lists and loops to analyze interesting

properties of our student data
. Ql 0 ‘
oy 10
<A
e —

Help prepare for Lab 4

List Comprehensions

= s x;o' 0 \ g@‘"%
@aﬁ Q\,ﬂ@ @ Sk W

List Patterns: Map & Filter

When using lists and loops, there are common patterns that appear

Mapping: lterate over a list and return a new list that results from
performing an operation on each element of original list

F.o, take a list of integers nuML1st and return a new list
which contains the square of each number in numL1st

Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

F.o, take a list of integers nUML1st and return a new list which
contains only the even numbers in numL1st

Python allows us to implement these patterns succinctly using
list comprehensions

List Comprehensions

Mapping List Comprehension (perform operation on each element)

newList = [expression for item in sequence]

Filtering List Comprehension (only keep some elements)

newList = [item for item in sequence if 1

Important points:

List comprehensions always start with an expression (even a variable
name like “item” Is an expression!)

* VWe never use append() inside of list comprehensions

* We can combine mapping and filtering into a single list comprehension:

newList = [expression for item in sequence 1f 1

Dissecting List Comprehensions

newList = [expression for item in sequence 1if

result = []

Task: Extract even numbers (for n in range (10):)
from a range and create a [(if n%2 == 0:)

list of their squares. result.append((n**2))

Using a list
comprehension:

'

G:'or n in‘range(IO)Xif n$2 == 0]

result = [@**2

expression item sequence

All list comprehensions can be rewritten using a for loop!

Using List Comprehensions

List comprehensions are convenient when working with files

Recall our list of student names from before

students

['RJ Acosta',
'Jackson C. Adelman',
'Harris Agha',
'Nick R. Alcock',

Example: How can we find the list of student names that begin with a
vowel? (Hint: we'll use our isVowe L () function again)

|dea:
[terate over students (list of strings)
For each name In list, check If first letter is a vowel

If it I1s, add name to result list

Using List Comprehensions

List comprehensions are convenient when working with files

Recall our list of student names from before

students

['RJ Acosta',
'"Jackson C. Adelman',
'Harris Agha',
'Nick R. Alcock',

Example: How can we find the list of student names that begin with a
vowel? (Hint: we'll use our isVowe L () function again)

vowe INames = []
for name in students:
if isVowel(name([0]):
vowe INames . append (name)

Using List Comprehensions

List comprehensions are convenient when working with files

Recall our list of student names from before

students

['RJ Acosta',
'"Jackson C. Adelman',
'Harris Agha',
'Nick R. Alcock',

Example: How can we find the list of student names that begin with a
vowel? (Hintwe'll use onr isVowe L() function again)

item sequence
vowelN .qes = [] ’
for name in students: expression

if isVowel(name[0]):
vowe INames . append (name)

Using List Comprehensions

List comprehensions are convenient when working with files

Recall our list of student names from before

students

['RJ Acosta',

'"Jackson C. Adelman',
'Harris Agha',

'Nick R. Alcock',

Example: How can we find the list of student names that begin with a
vowel? (Hint: we'll use our isVowe L () function again)

vowelNames = []
for name in students:
if isVowel(name([0]):
vowe INames.append (name)

expression item sequence

vowelNames = [name for name in students if isVowel(name[0])]
vowelNames

Using List Comprehensions

List comprehensions are convenient when working with files

Recall our list of student names from before

students

['RJ Acosta',
'"Jackson C. Adelman',
'Harris Agha',
'Nick R. Alcock',

Example: How can we find the list of student names that begin with a
vowel? (Hint: we'll use our isVowe L () function again)

vowelNames = [name for name in students if isVowel(name[0])]
vowelNames

["Emir C. Atli',
'Anjali K. Bhatia',
'Alex W. Choi',
'"Ethan Cooper',
'"Edith N. Edwards-Mizel',
'"Amir H. Estejab’',
'"Arden N. Fluehr',

Lists of Lists

: Q.0 &\ [/
@ﬁﬁ\iﬁ@‘—é

Lists of Lists!

We have already seen lists of strings

We can also have lists of lists (sometimes called a two-dimensional list)!

Often arise when using list comprehensions

Suppose we have a list of lists of strings called myL1st

word = myList[a] [b] (# word is a string)

a is iIndex into “outer” list (identifies which inner list we want)

b is index into “inner’” list (identifies which element within the inner list)

b
l

myList = [['cat', 'frog']
'dog'|, 'toad']

'cow', 'duck'.

myList[1] [@]7
ldog’
«—d

]

We Don't Talk About Brure Data Types

Python is a loosely typed programming language
- We don't explicitly declare data types of variables

But like Bruno, the creepy uncle in Encanto who lurks behind the
walls and predicts the future, data types are always there

It's iImportant to make sure we pay attention to what a function
expects, especially with lists and strings! (remember this in Lab 4)

Lists of lists of strings versus list of strings:

myList = [['cat', 'frog'l, myList = ['cat’, 'frog',
'dog', 'toad'l, 'dog’, 'toad',
[‘cow', 'duck']] ‘cow’, 'duck']

myList[1][@] is 'dog' myList[1][@] is 'f'

Lists of Lists and Comprehensions

Suppose we want to create a list of lists of strings using our student data

Cioeare © item °" sequence expression results in a list
with open(t /Iename) as roster:
for student in roster:
allStudents.append(student.strip().split(',"))

Acosta,RJ,26,rja3
Agha,Harris, 25,hhal
Alcock,Nick R.,25,nra2
Atli,Emir C.,26,eca2
Chang,Daniel Y.,25,dycl
Durham,Keelan S.,25,ksd2
Felten,Timothy E.,26,tef2
Gwilt,Kyle E.,25,kgl5
Hartman,Sarah A.,25,sah4
Howard-Sarin,Brij C.,26,bch6
Jiang,Weiran,26,wj4

Joy,Matt L.,26,mlj2
Keyes,Mikey A.,26,mak5
Kubomiya,Reona, 26, rk20
Lee,Gabe, 26,gj11

Lee,Yuri J.,26,yjll

Nguyen, Trung Nguyen T.,26,ttn2

classnames.csv

Lists of Lists and Comprehensions

Suppose we want to create a list of lists of strings using our student data

filename = 5sn
allStudent; It€M
with open(t /Iename) as roster:
for student in roster:
allStudents.append(student.strip().split(',"))

‘ sequence expression results in a list

with a list comprehension!

filename = 'csv/classnames.csv'

with open(filename) as roster:
allStudents = [student.strip().split(',') for student in roster]

item sequence

allStudents # list of lists of strings expression results in a list
[['Acosta', 'RJ', '26', 'rja3'l, Acosta,RJ, 26, rja3
) Agha,Harris,25,hhal

['Agha', 'Harris', '25', 'hhal'], Alcock,Nick R.,25,nra2
[IA.l.COCkI 'Nick R.' 1251 |nra2|] Atli,Emir C.,26,eca2

_ o ! ! ! Chang,Daniel Y.,25,dycl
["Atli', 'Emir C.', '26', 'eca2'l], Durham,Keelan S.,25,ksd2
['Chang', 'Daniel Y.', '25', ‘'dycl'l, Ejﬁinkﬁgméf‘yzg';(éﬁ_;fefz
['Durham', 'Keelan S.', '25', 'ksd2'l],
['Felten', 'Timothy E.', '26', 'tef2'], classnames.csv

['Gwilt', 'Kyle E.', '25', 'kgl5'],
['Hartman', 'Sarah A.', '25', 'sah4'], list of lists of strings

More List Comprehensions
[['Acosta', 'RJ', '26', 'rja3'l,

a-l_-l_StudentS: ['Agha', 'Harris', '25', 'hhal'l],
['Alcock', 'Nick R.', '25', 'nra2'l],

- Generate list of only last names using allStudents

generate list of only student last names

lastNames = [s[0] for s in allStudents]
lastNames

['Acosta',
'Agha’,
'"Alcock',
"Atli’,
'Chang’,

- Generate list of only first names

List comprehension to generate a list of first names
(without middle initial)

firstNames = [s[1l].split()[0] for s in allStudents]

firstNames .

['RI', split() first name, return first element
'Harris', (effectively removes middle initial)
'Nick',

"Emir’',

'Daniel’,

Exercise:
Student Fun Facts

B) .0 = \ /e

Exercise: Student Fun Facts!

- Write a function characterList which takes in two

arguments rosterList (list of lists of strings) and character (a

string) and returns the list of students in the class whose first name
starts with character.

- Can we do this with a list comprehension?

def characterList(rosterList, character):
"""Takes the student info as a list of lists and a

string character and returns a list of students whose
first name starts with character"""

Exercise: Student Fun Facts!

- Write a function characterList which takes in two

arguments rosterList (list of lists of strings) and character (a

string) and returns the list of students in the class whose first name
starts with character.

- Can we do this with a list comprehension?

def characterList(rosterList, character):
"""Takes the student info as a list of lists and a

string character and returns a list of students whose
first name starts with character"""

return [name[l] for name in rosterList if name[l1][0] == character]

characterList(allStudents, "B")

['Brij C.', 'Betsy'l

Exercise: Student Fun Facts!

Write a function yearL1st which takes in two
arguments, rosterList (list of L1sts of strings)

and year (1nt) and returns the 11st of students in the class with
that graduating year

def yearList(rosterList, year):
"""Takes the student info as a list of lists and a year (22-26)
and returns a list of students graduating that year"""“
return [name[1]+" "+name[@] for name in rosterList if name[2] == str(year)]

seniors = yearList(allStudents, 23)
seniors

['Min Kyu Park',

‘Matthew L. Phang',
'Jennifer R. Sarmiento',
'Patrick Izidro',
'Sameer Jain',

'Tiffany J. Park’,

'Matt Wisotsky',

'Grace A. Clarke',
'Ethan Cooper']

Exercise: Student Fun Facts!

Write a function mostVowe s that can be used to compute the list

of students with the most vowels In their first name. (Hint: use
countVowels())

def mostVowels(wordList):

'"'"'"Takes a list of strings wordList and returns a list
of strings from wordList that contain the most # vowels''

General strategy for finding max in list of lists!

Initialize a max value BEFORE the loop to a very small number

If you see a value bigger than max, update max

Exercise: Student Fun Facts!

Write a function mostVowe s that can be used to compute the list
of students with the most vowels In their first name. (Hint: use
countVowels())

def mostVowels(wordList):
'"'"'"Takes a list of strings wordList and returns a list
of strings from wordList that contain the most # vowels'''
maxSoFar = 0 # initialize counter
result = []
for word in wordList:
count = countVowels (word)
if count > maxSoFar:
update: found a better word
maxSoFar = count
result = [word]

elif count == maxSoFar:
result.append(word)
return result

which student(s) has most vowels in their name?
mostVowelNames = mostVowels(firstNames)
mostVowelNames

['Genevieve', 'Maximilian']

Exercise: Student Fun Facts!

Write a function LeastVowe Ls that can be used to compute the
list of students with the least vowels in their first name. (Hint: use
countVowels())

def leastVowels(wordList):
'"'"'"Takes a list of strings wordList and returns a list
of strings in wordList that contain the least number of vowels
minSoFar = len(wordList[0]) # initialize counter
result = []
for word in wordList:
count = countVowels (word)
if count < minSoFar:
update: found a better word
minSoFar = count
result = [word]

elif count == minSoFar:
result.append(word)
return result

leastVowels (firstNames)

[‘R]', 'C.]3."', 'M']

The end!

CS1 34
Nested Lists & Comprehensions

H D @ = N

