
CS134:
Nested Lists & Comprehensions

Announcements & Logistics
• Homework 4 is out on GLOW, due Monday at 10 pm
• Lab 4 will be released today: has two parts!

• Part 1 is due Wed/Thur (Oct 5/6) at 10 pm
• Part 2 is due the following Wed/Thur (Oct 12/13) at 10 pm (after reading days!)

• Final exam: Friday Dec 16 at 9:30 am

• Midterm exam: Thur Oct 20 evening exam (more details forthcoming
regarding format)

• Time Option 1: 6 pm - 7:30 pm in Wege (TCL 123)

• Time Option 2: 8 pm - 9:30 pm in Wege (TCL 123)
• TCL 206 for reduced distractions/extra time
• Let us know asap if you have any class conflicts or need additional

accommodations
• Extra time accommodations should plan to start at 6pm if possible

Last Time
• Discussed file reading using lists and strings

• Used string methods .strip(), .split()
• Used list methods .append(), .extend(), .count()

• Learned about ranges (another sequence in Python)

Today’s Plan
• Learn about list comprehensions as a way to simplify list accumulations

• Leads to simpler, more succinct code
• Begin exploring lists of lists

• Use our knowledge about lists and loops to analyze interesting
properties of our student data

• Help prepare for Lab 4

List Comprehensions

List Patterns: Map & Filter
• When using lists and loops, there are common patterns that appear

• Mapping: Iterate over a list and return a new list that results from
performing an operation on each element of original list

• E.g., take a list of integers numList and return a new list
which contains the square of each number in numList

• Filtering: Iterate over a list and return a new list that results from
keeping only elements of the original list that satisfy some condition

• E.g., take a list of integers numList and return a new list which
contains only the even numbers in numList

• Python allows us to implement these patterns succinctly using
list comprehensions

List Comprehensions

• Important points:
• List comprehensions always start with an expression (even a variable

name like “item” is an expression!)
• We never use append() inside of list comprehensions
• We can combine mapping and filtering into a single list comprehension:

Mapping List Comprehension (perform operation on each element)

newList = [expression for item in sequence]

Filtering List Comprehension (only keep some elements)

newList = [item for item in sequence if conditional]

newList = [expression for item in sequence if conditional]

Dissecting List Comprehensions

Task: Extract even numbers
from a range and create a

list of their squares.

Using a list
comprehension:

newList = [expression for item in sequence if conditional]

expression item sequence conditional

All list comprehensions can be rewritten using a for loop!

Using List Comprehensions
• List comprehensions are convenient when working with files
• Recall our list of student names from before

• Example: How can we find the list of student names that begin with a
vowel? (Hint: we’ll use our isVowel() function again)

• Idea:
• Iterate over students (list of strings)
• For each name in list, check if first letter is a vowel
• If it is, add name to result list

Using List Comprehensions
• List comprehensions are convenient when working with files
• Recall our list of student names from before

• Example: How can we find the list of student names that begin with a
vowel? (Hint: we’ll use our isVowel() function again)

• Idea:
• Iterate over students (list of strings)
• For each name in list, check if first letter is a vowel
• If it is, add name to result list

Using List Comprehensions
• List comprehensions are convenient when working with files
• Recall our list of student names from before

• Example: How can we find the list of student names that begin with a
vowel? (Hint: we’ll use our isVowel() function again)

• Idea:
• Iterate over students (list of strings)
• For each name in list, check if first letter is a vowel
• If it is, add name to result list

item sequence

conditional

expression

Using List Comprehensions
• List comprehensions are convenient when working with files
• Recall our list of student names from before

• Example: How can we find the list of student names that begin with a
vowel? (Hint: we’ll use our isVowel() function again)

item sequence conditionalexpression

Using List Comprehensions
• List comprehensions are convenient when working with files
• Recall our list of student names from before

• Example: How can we find the list of student names that begin with a
vowel? (Hint: we’ll use our isVowel() function again)

Lists of Lists

Lists of Lists!
• We have already seen lists of strings
• We can also have lists of lists (sometimes called a two-dimensional list)!
• Often arise when using list comprehensions

• Suppose we have a list of lists of strings called myList
• word = myList[a][b] (# word is a string)

• a is index into “outer” list (identifies which inner list we want)

• b is index into “inner” list (identifies which element within the inner list)

myList = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

a

b
myList[1][0]?

‘dog’

We Don’t Talk About Bruno Data Types

• Python is a loosely typed programming language
• We don’t explicitly declare data types of variables
• But like Bruno, the creepy uncle in Encanto who lurks behind the

walls and predicts the future, data types are always there
• It’s important to make sure we pay attention to what a function

expects, especially with lists and strings! (remember this in Lab 4)
• Lists of lists of strings versus list of strings:

myList = [['cat', 'frog'],
 ['dog', 'toad'],
 ['cow', 'duck']]

myList[1][0] is 'dog'

myList = ['cat’, 'frog',
 'dog’, 'toad',
 'cow’, 'duck']

myList[1][0] is 'f'

• Suppose we want to create a list of lists of strings using our student data

expression results in a listitem sequence

Lists of Lists and Comprehensions

classnames.csv

Lists of Lists and Comprehensions
• Suppose we want to create a list of lists of strings using our student data

expression results in a list

item sequence

expression results in a listitem sequence

list of lists of strings

classnames.csv

More List Comprehensions

• Generate list of only last names using allStudents

• Generate list of only first names

split() first name, return first element
(effectively removes middle initial)

allStudents:

Exercise:
Student Fun Facts

Exercise: Student Fun Facts!
• Write a function characterList which takes in two

arguments rosterList (list of lists of strings) and character (a
string) and returns the list of students in the class whose first name
starts with character.

• Can we do this with a list comprehension?

Exercise: Student Fun Facts!
• Write a function characterList which takes in two

arguments rosterList (list of lists of strings) and character (a
string) and returns the list of students in the class whose first name
starts with character.

• Can we do this with a list comprehension?

Exercise: Student Fun Facts!
• Write a function yearList which takes in two

arguments, rosterList (list of lists of strings)
and year (int) and returns the list of students in the class with
that graduating year

Exercise: Student Fun Facts!
• Write a function mostVowels that can be used to compute the list

of students with the most vowels in their first name. (Hint: use
countVowels().)

• General strategy for finding max in list of lists?
• Initialize a max value BEFORE the loop to a very small number
• If you see a value bigger than max, update max

Exercise: Student Fun Facts!
• Write a function mostVowels that can be used to compute the list

of students with the most vowels in their first name. (Hint: use
countVowels().)

Exercise: Student Fun Facts!
• Write a function leastVowels that can be used to compute the

list of students with the least vowels in their first name. (Hint: use
countVowels().)

CS134:
Nested Lists & Comprehensions

The	end!

