
CS134:  
Ranges & Files

Announcements & Logistics
• Homework 4 due next Mon at 10 pm

• Lab 2 feedback coming soon

• Lab 3 due today/tomorrow at 10pm
• Lots of student help hours today/tomorrow if you need help!

Do You Have Any Questions?

Interpreting Lab Feedback
+ Good
~ Okay
- Needs work

Grade

Comments

Look for comments that start with #$ in your code.

Last Time
• Learned about nested for loops

• Summarized important string and list methods and operations
• Sequence operators and functions: +, [], [:], *, etc

• All sequence ops work similarly on strings and lists
• None of them change the original string or list

• String methods: .lower(), .upper(), .join(), .split()

• List methods: .append(), .extend()

Today’s Plan
• Review adding items to lists using +, append(), and extend()

• Begin thinking about side effects of mutability in lists

• Discuss ranges: as an easy way to generate numerical sequences

• Discuss file reading and writing using lists and strings (like
readWords() from lab)

• We’ll return to more advanced list functionality on Friday

Recap: Modifying Lists
• Unlike strings, lists are mutable data structures

• We can change them (delete things from them, add things to them, etc.)
• List concatenation (using +) creates a new list and does not modify (or

mutate) any existing list
• Important point: Concatenating to a list using + returns a new list!

• Alternatively we can append to a list using a special list method
• The list method myList.append(item) modifies the

list myList by adding item to it at the end
• Often more efficient to append rather than concatenate! (But we have to

be very careful when modifying the list)
• Important point: Appending to a list modifies the existing list!

Adding elements to a List
• Here are a few examples that show how to use the list .append()

method vs + operator to add items to the end of an existing list

list concatenation

list append() method, notice dot notation

this is a new list!

More Useful List Methods
• myList.extend(itemList): appends all items in itemList to the end of
myList (modifying myList)

• myList.count(item): counts and returns the number (int) of times item
appears in myList

• myList.index(item): returns the first index (int) of item in myList if it is
present, else throws an error

Summarizing Mutability in Strings vs Lists

• Once you create a string, it cannot be changed!

• All operations that we have seen on strings return a new string and do

not modify the original string 
 

• Lists are mutable (or changeable) sequences

• We concatenate items to a list using +, but this does not change the list

• We append items using append() method, and this does change the list

• Next week we’ll revisit list mutability in more detail!

Lists are mutable

Strings are immutable

Ranges

Moving on: Ranges (another sequence!)
• Python provides an easy way to iterate over numerical sequences using the

range data type, another sequence

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second; note: default starting value is 0

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

Moving on: Ranges (another sequence!)
• Python provides an easy way to iterate over numerical sequences using the

range data type, another sequence

• When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up to, but not including,
the second; note: default starting value is 0

• To see the values included in the range, we can pass our range to the
list() function which returns a list of them

A range is a type of
sequence in Python (like

string and list)

To see elements in range, pass
range to list() function

First argument omitted,
defaults to 0

• In addition to iterating over strings and lists, we can use a for loop and a
range to simply repeat a task. The following loops print a pattern to the
screen. (Look closely at the indentation!)

•  

Loops and Ranges to Print Patterns

What are the values of i
and j???

Iterating Over Ranges

Iterating Over Ranges

i = 0
i = 1
i = 2
i = 3
i = 4
j = 0
j = 1
j = 2
j = 3
j = 4

i = 0

i = 2

j = 1

i = 4

j = 0

i = 3
j = 0
j = 1
j = 2

i = 1
j = 0

j = 0
j = 1
j = 2
j = 3

i, not j!

Reading Data from Files

Working with Files in Python
• File I/O is a very common and important operation

• open(filename, mode) is a built-in Python function for working with files

• filename is a path to a file as a string

• mode is a string where

• 'r' - open for reading (default)

• 'w' - open for writing (will overwrite previous contents)

• 'a' - open for appending (will not overwrite previous contents)

• Using open() within a with … as code block, we can iterate over the lines
of a text file just as we iterated over strings and lists in previous lectures

Opening Files: with … as

with open(filename) as inputFile:

do something with file

Note. (syntax) Indentation defines the body of the
with block where the file is open. File automatically

closed after with…as block.

Path to file on computer as a string

Variable name for your file

Iterating over Lines in a File
• Within a with open(filename) as inputFile: block, we can

iterate over the lines in the file just as we would iterate over any sequence
such as lists, strings, or ranges

• The end of a line in the text file is determined by the special newline
character '\n’

• Example: We have a text file mountains.txt within a directory
textfiles. We can iterate and print each line as follows:

Path to file on computer as a string

Variable name for your file

Common File Type: CSVs
• A CSV (Comma Separated Values) file is a specific type of plain text file

that stores “tabular” data
• Each row of a table is a line in the text file, with each column on the row

separated by commas
• This format is a common import and export format for spreadsheets and

databases

CSV form:
Name,Age
Marcel the Shell,4
Nana Connie,70
Mario,55

Working with CSVs
• Since CSVs are just text files, we can process them in the same way
• Might require additional post-processing/splitting using string methods

lastname, firstname

Useful String and List Methods in File Reading

• When reading files, we can use our favorite list and string methods to work
with the data

• line.strip(): Remove any leading/trailing white space or “\n”

• line.split(','): Separate a comma-separated sequence of words
and create a list of strings

• ' '.join(line.split(',')): Create a single “big” string with
words separated by spaces instead of commas

• myList.extend(): Create lists of words while iterating over the file

• myList.count(ele): Count the occurrence of various elements

• …and so on!

Data Analysis
• Some examples (more on Jupyter!)

split() returns a list

• Convert our last, first CSV (snippet shown below) into a list of names

Data Analysis w/ CSVs

lastname, firstname (CSV)

string parsing to find first and last names;
then append string to list

Final result: a list of strings

Writing to Files

Writing to Files
• In addition to reading, we can also write to files
• Example: Write all student names into a file.

• To open a new file for writing, we use open with the mode ‘w'.

• Use .write() file method to add a string to a file

convert student list into a string separated
by new lines

Appending to Files
• If a file already has something in it, opening it in w mode again will

erase all of its past contents
• Instead we can append something to an existing file without erasing

the contents. To do that we open in append a mode.

This is the end of our studentNames file

An Aside: Format Printing for Strings
• A convenient way to build strings with particular form is to use

the .format() string method (you’ve seen this in lab)
Syntax: myString.format(*args)

*args means it takes zero or more arguments
• For every pair of braces ({}), format consumes one argument
• Argument is implicitly converted to a string and concatenated with

the remaining parts of the format string
• Especially useful when writing to files

CS134:  
Ranges & Files

The	end!

