CS |34
Ranges & Files

H D @ = \ /.
T IEEEINT

Announcements & Logistics

Homework 4 due next Mon at |0 pm
Lab 2 feedback coming soon
Lab 3 due today/tomorrow at 10pm

Lots of student help hours today/tomorrow if you need help!

Do You Have Any Questions?

Interpreting Lab Feedback

GRADE SHEET FOR CS134 LAB 2 ("Day of the week")

+ Good
Requirements of this lab: ~
1. UTCDay(timeval) Okay
+ Computes corre g g below, and comments if failure) Needs WOI"I(

- CO® 1s straightforward and readable
~ Includes helpful comments
2. localbay(timeval, offset)
+ Computes correctly
+ Calls UTCDay
+ Includes helpful comments
3. dayOfWeek(day)
+ Computes correctly
+ Makes appropriate use of conditionals
4. Main method

+ Copied correctly
+ Computes and prints the current da

Grade: A

Comments from Graders:

- Excellent job! Make sure you update the README with your collaborators

Look for comments that start with #$ in your code.

Last [Ime

Learned about nested for loops
Summarized important string and list methods and operations
Sequence operators and functions:+, []1, [:]1, *, etc
- All sequence ops work similarly on strings and lists
None of them change the original string or list
String methods: . lower(), .upper(), .join(), .split()
List methods: .append(), .extend()

Joday's Plan

Review adding items to lists using +, append(), and extend()
Begin thinking about side effects of mutability in lists
Discuss ranges: as an easy way to generate numerical sequences

Discuss file reading and writing using lists and strings (like
readWords() from lab)

We'll return to more advanced list functionality on Friday

., @
\,QO
\,OJXO
\:s
CY—

Recap: Moditying Lists

» Unlike strings, lists are mutable data structures

* We can change them (delete things from them, add things to them, etc.)

- List concatenation (using +) creates a new list and does not modify (or
mutate) any existing list

* Important point: Concatenating to a list using + returns a new list!

- Alternatively we can append to a list using a special list method
+ The list method myList.append(item) modifies the
istmyList by adding 1tem to it at the end

+ Often more efficient to append rather than concatenate! (But we have to

be very careful when modifying the list)

* Important point: Appending to a list modifies the existing list!

Adding elements to a List

- Here are a few examples that show how to use the list .append()

method vs + operator to add items to the end of an existing list
numList = [1, 2, 3, 4, 5]

numList + [6] — list concatenation

(1, 2, 3, 4, 5, 6] this is a new list!

numList # numList has not changed

[1I 2’ 3’ 4’ 5]

numList.append(6) — [ist append() method, notice dot notation

numList # numList has been updated to include 6

More Useful List Methods

- myList.extend(itemList): appends all items in itemList to the end of
myL1ist (modifying myL1st)

- myList.count(item): counts and returns the number (int) of times item
appears in myList

- myList.index(item): returns the first index (int) of item in myList if it is
present, else throws an error

myList = [1, 7, 3, 4, 5] myList.index(10)

myList.extend([6, 4]) ValueError
<ipython-input-38-14d2e386¢c720:

myList ———=> 1 myList.index(10)

(1, 7, 3, 4, 5, 6, 4] ValueError: 10 is not in 1list

myList.count(4)

2

myList.index(3)

2

Summarizing Mutability in Strings vs Lists

Strings are immutable

Once you create a string, it cannot be changed!

All operations that we have seen on strings return a new string and do

not modify the original string

Lists are mutable

Lists are mutable (or changeable) sequences

VWe concatenate items to a list using +, but this does not change the list
We append items using append() method, and this does change the list

Next week we'll revisit list mutability in more detall!

Ranges

H 3 .2 - \ / %

Moving on: Ranges (another sequencel)

Python provides an easy way to iterate over numerical sequences using the
range data type, another sequence

* When the range() function is given two integer arguments, it returns a
range object of all integers starting at the first and up 1o, but not including,
the second; note: default starting value is O

* o see the values included in the range, we can pass our range to the
11st() function which returns a list of them

range(0,10) list(range(0, 10))

range(0, 10)

type(range(0, 10)) list(range(10))

range [o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Moving on: Ranges (another sequencel)

* Python provides an easy way to iterate over numerical sequences using the
range data type, another sequence

* When the range() function is given two integer arguments, it returns a

range object of all integers starting at the first and up 1o, but not including,
the second; note: default starting value is O

* o see the values included in the range, we can pass our range to the
list(CC ~ ¢ o list of them
‘ A range is a type of
sequence in Python (like
string and list)

To see elements in range, pass
range to list() function

range(0,10) list(range(0, 10))

[0, 1, 2, 3, 4, Firstargument omitted,

range(0, 10) defaults to 0
efaults to

type(range(0, 10)) list(range(10))

range (o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Loops and Ranges to Print Patterns

In addition to iterating over strings and lists, we can use a for loop and a
range to simply repeat a task. The following loops print a pattern to the
screen. (Look closely at the indentation!)

what does this print? # what does this print?

for i in range(5): for i in range(5):
print ('S’ * 1) print('S$' * 1)

for j in range(5): for j in range(i):
print('*" * 3J) print('*' * 1)

What are the values of i
and j??7?

terating Over Ranges

what does this print? # what does this print?

for i in range(5): for i in range(5):
print('S$' * 1) print('S$S' * 1)

for j in range(5): for j in range(i):

print('*' * 3J) print('*' * 1)

terating Over Ranges

what does this print? # what does this print?
for i in range(5): for i in range(5):
print('S$' * 1) print('S$S' * 1)
for j in range(5): for j in range(i):
print('*' * 3J) print('*' * 1)
1=0 1 =0
$ i=1 $ i=1 i, not j!
S 1=2 * j =20
$$$ L= $$ i-2
$$$$ b= *) =0
i=0 * % j=1
* j=1 $$S i=3.
* % j =2 * % %] =20
* % % j =3 * % % j =1
* % % % j =4 * % % j =2
$$SS 1=4
* % k% J =0
* % % % j =1
* % % % j =2
* % %k % j =3

Reading Data from Files

=) @ 5 \ /e

Working with Files in Python

File I/O is a very common and important operation
open(filename, mode) is a built-in Python function for working with files
filename is a path to afile as a string

mode is a string where

" - open for reading (default)
'w' - open for writing (will overwrite previous contents)
'a’' - open for appending (will not overwrite previous contents)

Using open () withinawith .. as code block, we can iterate over the lines
of a text file just as we iterated over strings and lists in previous lectures

Opening Filesswith .. as

Path to file on computer as a string

with open(filename) as inputFile:

do something with file

Variable name for your file

Note. (syntax) Indentation defines the body of the
with block where the file is open. File automatically
closed after with...as block.

terating over Lines in a File

- Withinawith open(filename) as inputFile: block we can
iterate over the lines in the file just as we would iterate over any sequence
such as lists, strings, or ranges

- The end of a line in the text file is determined by the special newline
character '\n’

+ Example: We have a text file mountains. txt within a directory
textfiles. We can iterate and print each line as follows:

read input file and print each line
with open('textfiles/mountains.txt') as book:
for line in book:

print(line.strip()) Variable name for your file

O, proudly rise the monarchs of our mow. '~ land,

With their kingly forest robes, to the sky,

Where Alma Mater dwelleth with her chosen bar Path to file on computer as a string
And the peaceful river floweth gently by.

The mountains! The mountains! We greet them with a song,
Whose echoes rebounding their woodland heights along,
Shall mingle with anthems that winds and fountains sing,
Till hill and valley gaily gaily ring.

Common File Type: CSVs

A CSV (Comma Separated Values) file is a specific type of plain text file

that stores “tabular’ data

Fach row of a table is a line in the text file, with each column on the row

separated by commas

This format is a common import and export format for spreadsheets and

databases
A B
1 Name Age
2 Marcel the Shell 4
3 Nana Connie 70
4 | Mario 55

CSV form:

Name,Age

Marcel the Shell,4
Nana Connie, 70
Mario,55

Working with C5Vs

Since CSVs are just text files, we can process them in the same way

Might require additional post-processing/splitting using string methods

filename = 'csv/classnames.csv'
with open(filename) as roster:
for line in roster:
print(line.strip())

Acosta,RJ

Adelman,Jackson C.
Agha,Harris

Alcock,Nick R. lastname, firstname
Aragon,Valeria

Arian,M Aditta

Atli,Emir C.

Berrutti Bartesaghi,Martina
Bhatia,Anjali K.

Bossman, Tryphena

Brant,Nora E.

Cass,Ryan T.

Chang,Daniel Y.

Chang,Kayla

Chen,Will J.

Useful String and List Methods in File Reading

- When reading files, we can use our favorite list and string methods to work
with the data

Lline.strip(): Remove any leading/trailing white space or‘\n”

Lline.split("',"): Separate a comma-separated sequence of words
and create a list of strings

" 'ojoin(line.split(', ")) : Create asingle “big” string with
words separated by spaces instead of commas

- myList.extend(): Create lists of words while iterating over the file

- myList.count(ele): Countthe occurrence of various elements

...and so on!

Data Analysis

+ Some examples (more on Jupyter!)

1f we want to create one big list of the words, we can accumulate
in a list using the extend() method
wordList = []
with open('textfiles/mountains.txt') as book:
for line in book:
wordList.extend(line.strip().split())

split() returns a list

wordList

['o, ",
'"proudly’,
'rise',
'the',
'monarchs’,
'of ',
our.s,
'mountain’,

len(wordList)

133

number of times a word ('mountains!’') is in the song?
wordList.count('mountains! ')

4

Acosta,RJ
Adelman,Jackson C.

Data Analysis w/ CSVs

Convert our last, first CSV (snippet shown below) into a list of names

Agha,Harris lastname, firstname (CSV)

Alcock,Nick R.

students = [] # initialize empty list

filename = "csv/classNames.csv"

with open(filename) as roster:
for line in roster:

fullName = line.strip().split(',")

firstName = fullName[1l]

lastName = fullName[O0]

print(firstName, lastName)
students.append(firstName + ' ' + lastName)

students

['RJ Acosta',
'"Jackson C. Adelman',
'Harris Agha',
'Nick R. Alcock',
'Valeria Aragon',
'M Aditta Arian',
"Emir C. Atli',

'Martina Berrutti Bartesaghi',

'Anjali K. Bhatia',

string parsing to find first and last names;
then append string to list

Final result: a list of strings

Writing to Files

E) 8 B e\

Writing to Files

In addition to reading, we can also write to files
Example:Write all student names into a file.
To open a new file for writing, we use Open with the mode ‘W',

Use .write() file method to add a string to a file

with open('studentNames.txt', 'w') as sFile:
sFile.write('CS134 students:\n') # need newlines
sFile.write('\n'.join(students))

convert student list into a string separated
by new lines

Appending to Files

- If a file already has something in It, opening it iIn w mode again will
erase all of its past contents

* Instead we can append something to an existing file without erasing
the contents. To do that we open in append a mode.

with open('studentNames.txt', 'a') as sFile:
. sFile.write('\nGoodbye.\n")

cat studentNames. txt

Winnie Zhang

Nicole S. Zhou
Addison Zou This is the end of our studentNames file

Goodbye.

An Aside: Format Printing for Strings

A convenient way to build strings with particular form is to use
the . Tormat () string method (you've seen this in lab)

Syntax: myString.format(xargs)
*kargs means it takes zero or more arguments
For every pair of braces (1 }), format consumes one argument

Argument is implicitly converted to a string and concatenated with
the remaining parts of the format string

Especially useful when writing to files

"Hello, you {} world{}".format("silly",'!') # creates a new string
'Hello, you silly world!

print("Hello, {}.".format("you silly world!"))

Hello, you silll\;\w/

The end!

CS |34
Ranges & Files

H D @ = \ /.
T IEEEINT

