
CS134:  
Lists & Loops

Announcements & Logistics
• Homework 3 is due Monday @ 10 pm

• Lab 1 graded feedback was released on Wed
• Any problems? Email cs134staff@williams.edu

• Lab 3 starter code will be pushed today
• Try to spend 30-60 minutes on it before your scheduled lab
• A collection of word puzzles: can use your newly acquired

knowledge of strings, lists (today), functions and loops to solve them

Do You Have Any Questions?

Last Time
• Started discussing sequences in Python

• Focused on strings (sequences of characters)

• Discussed slicing [::], indexing [], in operators on strings

• Note: We also already know about the + operator on strings
• Note: There is a not in operator addition to in

• Also learned about string methods .lower() and .upper()

• Note: There are also string methods .islower()

and .isupper() that return True if string is in lowercase/
uppercase, else return False

Today’s Plan
• Learn about for loops for iterating over sequences

• Introduce a new sequence: Lists

• Apply indexing [], slicing [:], in, + operators to lists
• Start building a collection of functions that iterate over sequences (lists

and strings)

For Loops

Iterating with for Loops
• One of the most common ways to manipulate a sequence is to

perform some action for each element in the sequence

• This is called looping or iterating over the elements of a sequence

• Syntax of a for loop: 

for var in seq:

 # body of loop

 (do something)

var is called the loop variable

seq is a sequence (for example, a string)

Iterating with for Loops
• As the loop executes, the loop variable (char in this example) takes

on the value of each of the elements of the sequence one by one

>>> # simple example of for loop

>>> word = "Williams"

>>> for char in word:

... print(char)

W

i

l

l

i

a

m

s

This is a special kind of for..loop called a for-each loop.

Why might we call it that?

Counting Vowels
• We can use a for loop to improve our countVowels() function

• Notice how count “accumulates” values in the loop

• We call count an accumulation variable

• Works for any string!

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 0

'o''B' 's' 't' 'o' 'n'

countVowels('Boston')

word 'Boston'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 1

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

• How are the local variables updated as the loop runs? 

 def countVowels(word):

 '''Returns number of vowels in the word'''

 count = 0

 for char in word:

 if isVowel(char):

 count += 1

 return count
count 2

'o''B' 'o'

countVowels('Boston')

word 'Boston'

's' 't' 'n'

Counting Vowels: Tracing the Loop

charLoop variable

Exercise:
Count Characters

Exercise: Count Characters
• Define a function countChar() that takes two arguments, a character and

a word (both strings), and returns the number of times (int) that character
appears in the word (ignoring case). 

def countChar(char, word):

 '''Counts # of times char appears in word'''

 pass

>>> countChar('m', "ammonia")

2

>>> countChar('a', "Alabama")

4

>>> countChar('a', "rhythm")

0

Exercise: Count Characters
• Define a function countChar() that takes two arguments, a character and

a word (both strings), and returns the number of times (int) that character
appears in the word (ignoring case).

def countChar(char, word):

 '''Counts # of times char appears in word'''

 count = 0 # initialize accumulation var

 for letter in word: # letter is the loop variable

 if char.lower() == letter.lower():

 count += 1 # increment count (accumulate)

 return count

Exercise:
Vowel Sequences

Exercise: Vowel Sequences
• Define a function vowelSeq() that takes a string word as input and returns a

string containing all the vowels in word in the same order as they appear.

def vowelSeq(word):

 '''Returns the vowel subsequence in word'''

 pass

>>> vowelSeq("Chicago")

'iao'

>>> vowelSeq("protein")

'oei'

>>> vowelSeq("rhythm")

'' What might be other good values to test edge cases?

Exercise: Vowel Sequences
• Define a function vowelSeq() that takes a string word as input and returns a

string containing all the vowels in word in the same order as they appear.
• Accumulation variables don’t have to be counters! Can accumulate strings as well

def vowelSeq(word):

 '''returns the vowel subsequence in word'''

 vowels = "" # accumulation variable

 for char in word: # char is loop variable

 if isVowel(char): # if char is a vowel

 vowels += char # accumulate characters

 return vowels

Code from today can be
found in sequenceTools.py

Lists

Moving on: Lists
• Lists are another type of sequence in Python

• Definition: A list is a comma separated, ordered sequence of values

• Unlike strings, which can only contain characters, lists can be collections
of heterogenous objects (strings, ints, floats, etc)

• Today we’ll focus on iterating over lists (i.e., looking at the elements
sequentially) using for loops

• In upcoming lectures we’ll focus on manipulating and using lists to store
dynamic sequences of objects

• Lists are:

• Comma separated, ordered sequences of values

• Heterogenous collections of objects

• Mutable (or “changeable”) objects in Pythons. In contrast, strings are
immutable (they cannot be changed).

• We will discuss mutability in more detail soon!

Lists

• We already saw several sequence operators and functions last time

• We looked at strings last time

• These apply to lists as well!

• We can do the following operations on lists:

• Indexing elements of lists using [] operator

• Slicing lists using [::] operator

• Testing membership using in/not in operators

• Concatenation using + operators

• Using len() function to find length of list

Operations on Sequences

Basic Operations on Sequences

Indexing lists using []

Finding length of list using len()

Slicing lists using [:] (can also use optional step)

Membership in Sequences
• Recall: The in operator in Python is used to test if a given sequence is

a subsequence of another sequence; returns True or False

not in sequence operator
• The not in operator in Python returns True if and only if the given

element is not in the sequence

Note that not in also works for strings

• We can use the + operator to concatenate lists together

• Creates a new list with the combined elements of the sublists
• Does not modify original lists!

List Concatenation

aList is unchanged!

returns a new list with elements
from aList and bList

To change bList, we have to reassign bList to the new list

Looping over Lists
• We can loop over lists the same way we looped over strings
• As before, the loop variable iteratively takes on the values of each

item in the list, starting with the 0th item, then 1st, until the last item
• The following loop iterates over the list of ints, printing each item in it 

 

List Exercises

Exercise: countItem
• Let’s write a function countItem() that takes as input a

sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq. 
 

Exercise: countItem
• Let’s write a function countItem() that takes as input a

sequence seq (can be a string or a list), and an element el, and
returns the number of times el appears in the sequence seq. 
 

Another accumulation variable!

• Write a function that iterates over a given list of strings wordList,
returns a (new) list containing all the strings in wordList that start
and end with the same character (ignoring case). 
 

Exercise: wordStartEnd

• Step by step approach (organize your work):
• Go through every word in wordList
• Check if word starts and ends at same letter*

• If true, we need to “collect” this word (remember it for later!)
• Else, just go on to next word

• Takeaway: need a new list to accumulate desirable words 

• *Break down bigger steps (decomposition!)

• If word starts and ends at same letter :
• Can do this using string indexing

• Think about corner cases: what if string is empty? what about case?

Exercise: wordStartEnd

Exercise: wordStartEnd
• Write a function that iterates over a given list of strings wordList,

returns a (new) list containing all the strings in wordList that start
and end with the same character (ignoring case). 
 

Notice this syntax! We are adding word (a string) to result (a list).

result starts as an empty list

