CS|34:
Functions

Check-in After First Lab!

You have all survived your first computer science lab
 Congratulations!
Computer science tools that you used:
VS Code as a text editor for code
Terminal as a text-based interface to the computer
Git for retrieving & submitting your work

Python, of course!

Do You Have Any Questions?

ogit () &

Aside: Submitting Labs via Git

Grt Is a version control system that lets you manage and keep track of
your source code history

Key commands:

git clone - every time you start a new lab OR move to a new
machines, use git clone to download the latest copy of your code from
our server

git add <files> - mark <files> to be uploaded to server on next push
- git commit -m “message” - create a checkpoint, used after git add

git commit -am “message” - combines add and commit into one
step; only use for files that have been previously added!

git push - send files that were added/committed to server

- git pull - get latest code from server (after you have cloned)

© git

Aside: Useful Unix Commands

pwd - print working directory
mkdir <dir name> - make new directory (or folder)
cd <dir name> - change directory

Special directory names
. (single dot, current directory)

. . (two dots, parent directory)
~ (tilde, home directory)
- cd .. takes you to the parent directory

» Cd takes you “home”

» LS shows contents of current directory

Announcements & Logistics

Lab |
Due today at |10 pm (for Monday labs)
Due tomorrow at 10 pm (for Tuesday labs)
Make sure your work has been added/committed/pushed to evolene using git
Homework 2 released today on Glow, due next Monday at |0 pm
Open book/notes/computer
No time limit
 Student help hours and TA hours - check calendar

If you are in isolation and need to chat, let us know! We'll set up a time to Zoom

Do You Have Any Questions?

Aside: Jupyter Notebooks

You can experiment with examples that we do in class using our
Jupyter notebooks

Jupyter notebooks often contain additional examples beyond what
we cover In lecture

For extra practice, we recommend running these examples on
your own (using Jupyter or In Interactive Python)

Reviewing these notebooks Is also a great way to review lecture
material and study for exams

Last [Ime

Discussed data types and variables in Python
int, float, boolean, string
Learned about basic operators
- arithmetic, assignment
Experimented with built-in Python functions
« input(), print(), int()
Discussed different ways to run and interact with Python
Create a file using an editor (VS Code), run as a script from Terminal

Interactively execute Python from Terminal (or Jupyter notebook)

Joday's Plan

Discuss functions in greater detall
Review the built-in functions we (briefly) saw last time and in lab
input(), print(), int() all expect argument(s) within the parens
- We will examine these a bit more today

| earn how to define our own functions

., @
\,QO
\,OJXO
\:s
CY—

Review:
Python Built-in Functions

input(), print()
int(), float(), str()

Built-in functions: input()

input () displays its single argument as a prompt on the screen and
walits for the user to input text, followed by Enter/Return

[t interprets the entered value as a string (a sequence of characters)

>>> input('Enter your name: ')
Enter your name: Marcel the Shell
‘Marcel the Shell’ ~
>>> age = input('Enter your age: ') @
Enter your age: 12
>>> age

119 \\\\\\\\

Prompts in Maroon. User input in blue.
Inputted values are by default a string

Built-in functions: print()

print() displays a character-based representation of its argument(s)
on the screen/Terminal.

>>> name = ‘Marcel the Shell® Comma as a separator adds a space

>>> print('Your name is', name)

Your name 1s Marcel the Shell

>>> age = input('Enter your age : ')
Enter your age: 12

>>> print('The age of ' + name +
The age of Marcel the Shell is 12

is ' + age)

Can also add spaces through string
concatenation

Bulilt-in functions: Int()

When given a string that's a sequence of digits, optionally preceded by
+/—, 1int() returns the corresponding integer

On any other string it raises a ValueError

When given a float, int () returns the integer that results after
truncating it towards zero

When given an integer; int () returns that same integer

>>> int('42"')

42

>>> int('-5")

-5

>>> int('3.141")
ValueError

Built-in functions: float()

When given a string that's a sequence of digits, optionally preceded by
+/—, and optionally including one decimal point, float () returns the
corresponding floating point number.

On any other string it raises a ValueError
When given an integer, float () converts it to a floating point number.

When given a floating point number, float returns that number

>>> float('3.141")
3.141

>>> float('-273.15")
-273.15

>>> float('3.1.4")
ValueError

Built-in functions: str()

Converts a given type to a String and returns it

Returns a syntax error when given invalid input

>>> str(3.141)

'3.141"

>>> str(None)

'None'’

>>> str(134)

‘134"

>>> str($)

SyntaxError: invalid syntax

Today:
User-defined Functions

B) .0 = \ /e

Organizing Code with Functions

So far we have:
Written simple expressions in Python
Created small scripts to perform certain tasks
This is fine for small computations!
Need more organization and structure for larger problems
Structured code Is good for:
Keeping track of which part of our code is doing what actions
Keeping track of what information needs to supplied where

Reusability! Specifically, reusing blocks of code

Abstracting with Functions

Abstraction: Reduce code complexity by ignoring (or hiding) some

implementations detalls
Allows us to achieve code decomposition and reuse
Real life example: a video projector
We know how to switch it on and off (public interface)
We know how to connect it to our computer (input/output)
We don't know how 1t works internally (information hiding)

Key idea: \We don't need to know much about the internals of a

projector to be able to use it

Same is true with functions!

Decomposition

Divide individual tasks in our code into separate functions
Functions are self-contained and reusable
Each function is a small piece of a larger task
Keep code organized and coherent

We have already seen some built-in examples (int (), input(),
print(),etc)

Now we will learn how to decompose our Python code and hide small

detalls using user-defined functions

Later we will learn a new abstraction which achieves a greater level of

decomposition and code hiding: classes

Anatomy of a Function

Function definition characteristics:
A header consisting of:
name of the function
parameters (optional)
docstring (optional, but strongly recommended)
A body (indented and required)
Always returns something (with or without an explicit return statement)

Statements within the body of a function are not run in a program until they
are "called” or “invoked” through a function call (like calling print() or int() in

your program)

Function Example

All of this is the function’s header
Function definition

def square(x):

'"'"Takes a number and returns its square'''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

Function definition Function's name is square
def square(x):
"""Takes a number and returns i1ts square''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

square has one parameter, X, which
Function definition is the expected input to the function.

def square(x):
'"""Takes a number and returns its square'''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

. o This is the doestring, which is enclosed in triple
Function definition ctes. [t is a short description of the function.

def square(x):
'"'""Takes a number and returns its square'''

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

This is the body of the function. Notice
that this functions includes an explicit

def square(x): return statement.

Function definition

'"'"Takes a rwmber and returns its square'''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

Function definition Notice the indentation. This is

def square(x): very important!!
'''Tawes a number and returns its square''’

return x*x

Function Calls/Invocations

>>> square(5)
25
>>> square(-2)

4

Function Example

Function definition
def square(x):
'"'"Takeg a number and returns its square'''’

return R*x

‘When we call/invoke the function,
> Is the argument value.
Function Calls/Igvocations Function Is evaluated using x=5.

>>> square(5)
25
>>> square(-2)

4

Function Example

Function definition
def square(x):
'"'"Takes a number and returns its square'''’

return x*x Summary:

* Indent in function body (required)

- Colon after function name (required)

Function Calls/Invocations .
Hnet v ! » Docstring (recommended, good style)

>>> square(s) » X in function definition is a parameter

25 - Single line body which returns the result

of the expression X * X

S _ .
>>> square(-2) - return always ends execution!

4 « Function is defined once and can be
called any number of times!

A Closer Look At Parameters

Parameters are "holes” in the body of a function that will be filled in

with argument values in each invocation

A particular name for a parameter is irrelevant, as long as we use it

consistently in the body (just like f(x) and f(y) in math)

All of the square function definitions work exactly the same way!

Invocation would also look exactly the same: square(5)

def square(x): def square(apple):

return x*x return apple*apple

def square(num):

return num*num

Rule of thumb: Choose parameter names that make sense. Avoid always using X, for example.

Python Function Call Model

Function frame: Model for understanding how a function call works

def square(x): Return value replaces the function call!

return x*x

square| (2+3) | =P |square (5) | === | 25

square frame square frame

X= 5 X= 5

> +

return| x * Xx return/ 5 * 5

Function Call Replaced by Return Value

17 + square| (2+3)

4

17 + square| (5)

4

17 + 25

4

42

Interactive Python:
Let’s See Some Examples

