CS 1 34:
Python Types and Expressions

B) .0 = \ /&

Announcements & Logistics

HW 1| due today at |10 pm (Google form)
 Lab | today/tomorrow, due Wed/Thur at |Opm

Mon/Tue |:00 pm: Iris and Jeannie (Jeannie will be a few minutes late
on Tue, Rohit will cover)

Mon/Tue 2:30 pm: Jeannie

Goal: Setup computers, gain experience with the workflow and tools
Start with some short and sweet Python programs
Masks required
 Student help hours and TA hours start today
Check calendar on webpage for hours

« Questions?

Last [Ime

Discussed course logistics
Important take-aways:

Setup your personal machine soon (setup guides on course webpage)
If you get stuck, we'll help you in lab!

Review syllabus and check out course webpage

Joday's Plan

Learn lots of new vocabulary words!

Discuss data types and variables in Python
int, float, boolean, string

Learn about basic operators
arithmetic, assignment

Experiment with built-in Python functions and expressions
int(), input(), print()

Investigate different ways to run and interact with Python

Aspects of Languages

Primitive constructs
English:
words, punctuation
Programming languages:

numbers, strings, simple operators

— e Wl sqlutonop ‘3{,‘;’3{}33 climbing team step
= yercometil h_lISII]ESS achievement respect tomorrow

= o motivationer passiongytEess

veantires mbitionz=
inspiration_, lif m I Innlgltli%%rmlssmn

e 5011llENJE = S ystrategy=:
E =) . o -l—'-‘;-:g -
B = mruiigin S 8, finance

: potency
L=

Aspects of Languages

Syntax
English:
"boy dog cat”’ (incorrect), "boy hugs cat” (correct)
“Let's eat grandmal” (probably incorrect), “Let’s eat, grandmal!” (correct)
Programming language:

“hi"5 (incorrect), 4*5 (correct)

way sglution top forward l
— ﬂhJEGtIVE climbing (eam step
= nercss il hlISInESS achievement respect tnmorrow

oW mutwa Ione= assiongyEEass

treamires "Ambitione
msplratmn ||ft m I mn'&'.’%%"mlssiun

W g IIengE— ==strategu8‘*"
= e[.] uppnrtunltumm:n £ work flnanGE

potency
gmwthmcrease-c orgiect

Aspects of Languages

* Semantics Is the meaning associated with a syntactically correct string
of symbols

English:
Can have many meanings (ambiguous), e.g.
“Flying planes can be dangerous”
Other examples?
Programming languages:
Must be unambiguous
Can only have one meaning

Actual behavior is not always the intended behavior!

Python3

Programming language used in this course
Great introductory language
Better human readability and user friendly syntax than other PLs
For this class, we need Python 3.10
Checking version of Python on machine
Type python3 —-version inTerminal
Preinstalled on all lab machines

Installing Python3 on your machine: see setup guide on webpage

Python Primitive Types

Every data value has a data type. For example:
|0 1s an integer (type: int)
3.145 Is a decimal number (type: float)
‘Williams' or “Williams" Is a sequence of characters (type: string)
O (False) and | (True) (type: boolean or bool)
Represent answers to decision questions (yes/no)
“Empty” value (type: None)

We will revisit booleans and None types soon!

Knowing the type of a value allows us to choose
the right operator for expressions.

Python Operators

 Arithmetic operators:
+ (addition), = (subtraction), * (multiplication)
/ (floating point division, returns a value with a decimal point)
// (integer division, returns an integer)
% (modulo, or remainder)
#*% (power, or exponent)
(We will try these out with examples later and see how they behave)
 Assighnment operator:
= (“Is assigned’’, not “equals™)

Not to be confused with mathematical equality, which is written as
== In programming languages

= s used to “assign’ values to variables

Variables and Assisnments

A variable names a value that we want to use later in a program

f we define num = 17 then the value 17 essentially gets

stored In a slot In memory with the label hum

17

We are assigning num (a variable) the value 17

. . num
Once defined, we can reuse variable names again, and later

assienments can change the value In a variable box
hum= num - 5

What is stored in num after this evaluates?

Math vs Programming. An assignment: expression on the right
evaluated first and the value is stored in the variable name on the left

Variables and Assisnments

A variable names a value that we want to use later in a program

It we define hum
stored In a slot In memory with the label hum

We are assigning num (a variable) the value 17

Once defined, we can reuse variable names again, and later
assienments can change the value In a variable box

num= num - 5
What is stored in num after this evaluates?

17 then the value 17 essentially gets

17

num

A

num

var = <expression> (result of expression gets stored in the

variable box var)

Question. Why would we want to name values or expressions!

12

Abstracting Expressions

Why give names to data values or the results of expressions?
To reuse names instead of values

Easier to change code later

For example:

p1 = 3.1415926 # useful to name
radius = 2.2

area = pl1 * (radius**2)

suppose now we want to change radius

radius = 2.2 + 1
area = p1 * (radius**2) # new area

An Aside: Python Interfaces

Now we know a little bit about:
Python primitive data types (ints, floats, strings, etc)
Operators (mathematical, assignment)

Variables

Before we move on to more concepts, let's experiment a bit to see
what we can do with these

This semester, we will run Python code In two ways:
As a script (save code In a file, run from Terminal)

Interactively (from Terminal) in an interactive python session

Python: Program as a Script

e A program is a sequence of definitions and commands

e Defintions are evaluated

e (Commands are executed and instruct the interpreter to do something

e Jype instructions in a file that is read and evaluated sequentially

For example, this week in lab you will write helloworld.py in a
file and then execute it from the Terminal with
python3 helloworld.py

Common method: good for longer pieces of code or programs
We will use this method in our labs

Called "running the Python program as a script"

Python: Interactive

* Running Python interactively is great for introductory programming
* Launch the Python interpreter by typing python3 in the Terminal

* Opens up Interactive Python
* Almost like a "calculator” for Python commands

* Takes a Python expression as input and spits out the results of
the expression as output

* Great for trying out short pieces of code
* Great for teaching Python in Lectures

* Today we will use a "fancy" version of Interactive Python called Jupyter
Notebooks

Lecture 2: Jupyter Notebook

: Ju pyte I types-and-expressions Last Checkpoint: 17 minutes ago (autosaved) P Logout

File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 O

+ x & B 44 ¥ P»PRun B C M Markdown v

Types and Expressions

Jupyter Notebooks provide a rich interface to interactive Python. To read more about how to use them, check out our How To Jupyter guide.

Types in Python
The built-in type () function lets us see the data type of various values in Python.

Note: The one line phrases after # are comments, they are ignored during execution.
In []: type(1l34)
In []: type('l134') # single quotes
In []: type("134") # double quotes
In []: type(3.14159)
In []: type('")
In []: type(0)

In []: type(False)

Python Built-In Functions

= <y @ o \ /@
@aﬁ Q\JJ$ @ Sk W

Buillt-In Functions

Python comes with a ton of built-in capabilities in the form of
functions

We'll formally discuss functions soon, but for now, let’s look at a few
examples

Built-in functions: input()

input () displays its single argument as a prompt on the screen and
walits for the user to input text, followed by Enter/Return

[t interprets the entered value as a string (a sequence of characters)

>>> input('Enter your name: ')
Enter your name: Marcel the Shell
‘Marcel the Shell’ ~
>>> age = input('Enter your age: ') @
Enter your age: 12
>>> age

119 \\\\\\\\

Prompts in Maroon. User input in blue.
Inputted values are by default a string

Built-in functions: print()

print() displays a character-based representation of its argument(s)
on the screen/Terminal.

>>> name = ‘Marcel the Shell® Comma as a separator adds a space

>>> print('Your name is', name)

Your name 1s Marcel the Shell

>>> age = input('Enter your age : ')
Enter your age: 12

>>> print('The age of ' + name +
The age of Marcel the Shell is 12

is ' + age)

Can also add spaces through string
concatenation

Bulilt-in functions: Int()

When given a string that's a sequence of digits, optionally preceded by
+/—, 1int() returns the corresponding integer

On any other string it raises a ValueError

When given a float, int () returns the integer that results after
truncating it towards zero

When given an integer; int () returns that same integer

>>> int('42"')

42

>>> int('-5")

-5

>>> int('3.141")
ValueError

Built-in functions: float()

When given a string that's a sequence of digits, optionally preceded by
+/—, and optionally including one decimal point, float () returns the
corresponding floating point number.

On any other string it raises a ValueError
When given an integer, float () converts it to a floating point number.

When given a floating point number, float returns that number

>>> float('3.141")
3.141

>>> float('-273.15")
-273.15

>>> float('3.1.4")
ValueError

Built-in functions: str()

Converts a given type to a String and returns it

Returns a syntax error when given invalid input

>>> str(3.141)

'3.141"

>>> str(None)

'None'’

>>> str(134)

‘134"

>>> str($)

SyntaxError: invalid syntax

Notes for Lab |

B) ..@ m \ /R

Submitting Labs via Git

Grt is a version control system that lets you manage and keep track of

your source code history e git

GitHub s a cloud-based git repository management & hosting
service

Collaboration: Lets you share your code with others, giving
them power to make revisions or edits

GitLab is similar to GitHub but we maintain it internally at Williams
and will use to handle submissions and grading

Git Commands in CS 34

git clone:copy code from server to a new machine for the first
time. Only run this once for each assignment on each machinel!

git add <files>:add new or modified files to the next commit
(this basically allows you to choose which files you plan to commit)

git commit -m “<message>":create a local snapshot of the
added files (this does not copy anything back to the serverl)

git push:copy changes from your machine back to our server

git pull:copy latest version of code from our server to your local
machine (this can only be done after you have run git clone on
this machine)

Directories iIn Unix

'Folders' on your computers are called 'directories’ in Unix-based

operating systems

Your ‘current directory’ Is iImportant when executing commands on the

Terminal

For example, Python programs that run as a script, such as
helloworld. py, must be in the same directory as where you
execute the command python3 helloworld.py in yourTerminal

Otherwise your computer doesn’'t know which program to run!
Similarly, when you g1t pull, you need to be in the correct directory

Useful to learn how to navigate between directories with the Terminal!

Useful Unix Commands

pwd - print working directory
mkdir <dir name> - make new directory (or folder)
cd <dir name> - change directory (like moving into a folder)

Special directory names in Unix
. single dot, current directory

. . two dots, parent directory
~ tilde, home directory
+ cd .. -takesyou to the parent directory

» Cd - takes you “home”

» s - shows contents of current directory

