
Randomized Quicksort

• Monte-Carlo algorithms

• Find the correct answer most of the time

• Can usually amplify probability of success with
repetitions

• Example, Karger’s min cut (in textbook)

• Las-Vegas algorithms

• Always find the correct answer, e.g. RandQuick sort
(today!)

• But the worst-case running-time guarantees are not
strong (they hold in expectation or with high probability,
but their goodness depends on randomness)

• Randomized data structures: hashing, search trees, filters, etc.

Randomized Algorithms & Data Structures

Randomized Algorithm I
Randomized Selection

Problem. Find the th smallest/largest element in an unsorted array

• Recall our selection algorithm from back in our divide and conquer unit (lecture 15):

Select :

 If : return

 Else:

Choose a pivot ; let be the rank of

Partition(

If : return

Else if : Select

Else: Select

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection

• Recall: pivot is “good” if it reduced the array size by at least a constant

• Gives a recurrence for some constant

• Expands to a decreasing geometric series

• In the deterministic algorithm, how did we find a good pivot?

• Split array into groups of

• And computed the median of group medians

• The pivot guaranteed that

• Here is a silly idea: What if we pick the pivot uniformly at random?

• Seems like the pivot is “usually” around the midpoint

• What is the expected running time?

T(n) ≤ T(αn) + O(n) α < 1
T(n) = O(n)

5

n → 7n/10

Selection with a Good Pivot

• Problem. Find the th smallest/largest element in an unsorted array

• Recall our selection algorithm

Select :

 If : return

 Else:

Choose a pivot uniformly at random; let be the rank of

Partition(

If : return

Else if : Select

Else: Select

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection

• Normally, we’d write a recurrence relation for a recursive function

• A bit complicated now—input sizes of later recursive calls depend on the
random choices of pivots in earlier calls

• We will use a different accounting trick for running time

• Randomized selection makes at most one recursive call each time:

• Group multiple recursive call in “phases”

• Sum of work done by all calls is equal to the sum of the work done in all the
phases

Analyzing Randomized Selection

• Idea: let a “phase” of the algorithm be the time it takes for the array size to drop by a
constant factor (say)

• If array shrinks by a constant factor in each phase and linear work is done in each
phase, what would be the running time?

•

• If we want a th, th split, what range should our pivot be in?

• Middle half of the array (if size array, then pivot in)

• What is the probability of picking such a pivot?

•

• Phase ends as soon as we pick a pivot in the middle half

• Expected # of recursive calls until phase ends?

n → (3/4) ⋅ n

T(n) = c(n + 3n/4 + (3/4)2n + … + 1) = O(n)

1/4 3/4

n [n/4,3n/4]

1/2

2

Analyzing in Phases

• Let the algorithm be in phase when the size of the array is

• At least but not greater that

• Expected number of iterations within a phase:

• Let be the expected number of steps spent in phase

• be the total number of steps taken by the algorithm

• recursive calls until th phase ends steps in phase

• recursive calls until th phase ends)

j

n (3
4)

j+1

n (3
4)

j

2

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ cn(3/4)j ⋅ E(# j = 2cn(3/4)j

Expected Running Time

• Let be the expected number of steps spent in phase

• be the total number of steps taken by the algorithm

• of iterations until th phase ends steps in phase

• iterations until th phase ends)

• Now we can apply linearity of expectation:

•

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ n(3/4)j ⋅ E(# j = 2cn(3/4)j

E[X] = ∑
j

E[Xj] ≤ ∑
j

2cn (3
4)

j

= 2cn∑
j

(3
4)

j

= Θ(n)

Expected Running Time

• Deterministic and random both take time

• What’s the advantage of the deterministic algorithm?

• Worst-case guarantee—the random algorithm could be very slow sometimes

• What’s the advantage of the random algorithm?

• Much much simpler and better constants hidden in

• Which should you use?

• Pretty much always random

• Question to ask yourself:

• how often is the randomized algorithm going to be much worse than ?

O(n)

O()

O(n)

Pivot Selection

Randomized Algorithm II
Randomized QuickSort

• Recall deterministic Quicksort

• Depending on the choice pivot, could be

• What if we pick the pivot uniformly at random?

• We saw in randomized selection that this leads to good pivots half of the time

O(n2)

Randomized Quicksort

Quicksort :

If Sort directly

Else: choose a pivot element

Partition around

Quicksort

Quicksort

(A)
|A | < 3 : (A)

p ← A
A<p, A>p ← p

(A<p)
(A>p)

• Intuitively half the pivots will be good, half bad

• We will analyze quick sort using another accounting trick (see the textbook for
example similar to selection’s approach of analyzing “phases”)

• Total work done can be split into to types:

• Work done making recursive calls (this is a lower order term, it turns out)

• Work partitioning the elements

• How many recursive calls in the worst case?

• Imagine worst pivot being chosen each time

• O(n)

Randomized Quicksort

• We thus need to bound the work partitioning elements

• Partitioning an array of size around a pivot takes exactly comparisons

• We won't look at partitions made in each recursive call, which depend on the
choice of random pivot

• Idea: Instead, account for the total work done by the partition step by summing
up the total number of comparisons made

• Two ways to count total comparisons:

• Look at the size of arrays across recursive calls and sum

• Look at all pairs of elements and count total # of times they are compared
(this is easier to do in this case)

n p n − 1

Randomized Quicksort

• Often multiple ways to determine a randomized algorithm’s cost

• We can split into phases, or count the cost directly. We can calculate
each probability, or use linearity of expectation

• Intrinsically some “cleverness” involved in choosing the way that gets
you a clean answer

• We’ll focus on problems where there’s a clear path to finding the solution
(either it follows directly from the question, or we’ll revisit problems
you’ve seen before). More complex problems abound if you look!

• That said, here’s a very clever way to calculate Quicksort’s running time

 Aside: Randomized Analysis

• Just for analysis, let denote the sorted version of input array
, that is, is the th smallest element in

• Define random variable as the number of times Quicksort
compares and

• Observation: or , why?

• , only compared when one of them is the current
pivot; pivots are excluded from future recursive calls

•
Let be the total number of comparisons made

by randomized Quicksort

B
A B[i] i A

Xij
B[i] B[j]

Xij = 0 Xij = 1

B[i] B[j]

T =
n

∑
i=1

n

∑
j=i+1

Xij

Counting Total Comparisons

•
Goal:

•

• When is ? That is, when are and compared?

• Consider a particular recursive call. Let rank of pivot be .

• Let's think about where lie with respect to

E[T] = E
n

∑
i=1

n

∑
j=i+1

Xij =
n

∑
i=1

n

∑
j=i+1

E[Xij]

E[Xij] = Pr[Xij = 1]

Xij = 1 B[i] B[j]

p r

B[i], B[j] p

Expected Running Time

•
Goal:

•

• When is ? That is, when are and compared?

• Consider a particular recursive call. Let rank of pivot be .

• Case 1. One of them is the pivot: or

• Case 2. Pivot is between them: and

• Case 3. Both less than the pivot:

• Case 4. Both greater than the pivot:

E[T] = E
n

∑
i=1

n

∑
j=i+1

Xij =
n

∑
i=1

n

∑
j=i+1

E[Xij]

E[Xij] = Pr[Xij = 1]

Xij = 1 B[i] B[j]

p r

r = i r = j

r > i r < j

r > i, j

r < i, j

Expected Running Time

• Case 1. or

• and are compared once and one of them is excluded from all future calls

• Case 2. and

• and are both compared to the pivot but not to each other, after which
they are in different recursive calls: will never be compared again

• Case 3. and Case 4.

• and are not compared to each other, they are both in the same subarray
and may be compared in the future

• Takeaway: , are compared for the 1st time when one of them is chosen as
pivot from & never again

r = i r = j

B[i] B[j]

r > i r < j

B[i] B[j]

r > i, j r < i, j

B[i] B[j]

B[i] B[j]
B[i], B[i + 1], …, B[j]

Comparisons for Each Case

• (one of them is picked as pivot from

•

•

Pr[Xij = 1] = Pr B[i], B[i + 1], …, B[j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

Expected Running Time

• and are compared iff one of them is the first pivot chosen from the
range

•

•

•
For fixed , inner sum is

• Thus, expected number of comparisons is: 

B[i] B[j]
B[i], B[i + 1], …, B[j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

i
1
2

+
1
3

+
1
4

+ …
1

n − i + 1
≤

n

∑
ℓ=2

1
ℓ

= O(log n)

E[T] = O(n log n)

Expected Running Time

At each round, the probability that conditioned
on the event that we are in Case 1 or Case 2.  

(In Cases 3 and 4,)

Xij = 1

Xij = 0

• Las Vegas algorithms like Quicksort and Selection are always correct and
their running time guarantees hold in expectation

• We can actually prove that the number of comparisons made by Quicksort is
 with high probability

• W.H.P. means that the the probability that the running time of quicksort is
more than a constant factor away from its expectation is very small
(polynomially small: less than for)

• Whp bounds are called concentration bounds

• Whp: ideal guarantees possible for a randomized algorithm

O(n log n)

c
1/nc c ≥ 1

Quick Sort Summary

Acknowledgments
• Some of the material in these slides are taken from

• Shikha Singh

• Kleinberg Tardos Slides by Kevin Wayne (https://
www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsI.pdf)

• Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE.pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

