
Randomized Quicksort



• Monte-Carlo algorithms

• Find the correct answer most of the time


• Can usually amplify probability of success with 
repetitions


• Example, Karger’s min cut (in textbook)


• Las-Vegas algorithms

• Always find the correct answer, e.g. RandQuick sort 
(today!)


• But the worst-case running-time guarantees are not 
strong (they hold in expectation or with high probability, 
but their goodness depends on randomness)


• Randomized data structures: hashing, search trees, filters, etc.

Randomized Algorithms & Data Structures



Randomized Algorithm I 
Randomized Selection



Problem.  Find the th smallest/largest element in an unsorted array


• Recall our selection algorithm from back in our divide and conquer unit (lecture 15):


Select :

  If :      return 


  Else:


Choose a pivot ; let  be the rank of 


Partition( 


If :       return 


Else if :      Select 


Else:       Select 

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection



• Recall:   pivot is “good” if it reduced the array size by at least a constant 


• Gives a recurrence  for some constant 


• Expands to a decreasing geometric series 


• In the deterministic algorithm, how did we find a good pivot?


• Split array into groups of 


• And computed the median of group medians 


• The pivot guaranteed that  


• Here is a silly idea: What if we pick the pivot uniformly at random?


• Seems like the pivot is “usually” around the midpoint


• What is the expected running time?

T(n) ≤ T(αn) + O(n) α < 1
T(n) = O(n)

5

n → 7n/10

Selection with a Good Pivot



• Problem.  Find the th smallest/largest element in an unsorted array


• Recall our selection algorithm


Select :

  If :      return 


  Else:


Choose a pivot  uniformly at random; let  be the rank of 


Partition( 


If :       return 


Else if :      Select 


Else:       Select 

k

(A, k)
|A | = 1 A[1]

p ← A[1,…, n] r p
r, A<p, A>p ← (A, p)

k = = r p
k < r (A<p, k)

(A>p, k − r)

Randomized Selection



• Normally, we’d write a recurrence relation for a recursive function


• A bit complicated now—input sizes of later recursive calls depend on the 
random choices of pivots in earlier calls


• We will use a different accounting trick for running time


• Randomized selection makes at most one recursive call each time:


• Group multiple recursive call in “phases”


• Sum of work done by all calls is equal to the sum of the work done in all the 
phases

Analyzing Randomized Selection



• Idea: let a “phase” of the algorithm be the time it takes for the array size to drop by a 
constant factor (say )


• If array shrinks by a constant factor in each phase and linear work is done in each 
phase, what would be the running time?


•   


• If we want a th, th split, what range should our pivot be in?


• Middle half of the array (if  size array, then pivot in ) 


• What is the probability of picking such a pivot?


• 


• Phase ends as soon as we pick a pivot in the middle half


• Expected # of recursive calls until phase ends?  

n → (3/4) ⋅ n

T(n) = c(n + 3n/4 + (3/4)2n + … + 1) = O(n)

1/4 3/4

n [n/4,3n/4]

1/2

2

Analyzing in Phases



• Let the algorithm be in phase  when the size of the array is


• At least  but not greater that 


• Expected number of iterations within a phase: 


• Let  be the expected number of steps spent in phase 


•  be the total number of steps taken by the algorithm


•   recursive calls until th phase ends   steps in phase 


•  recursive calls until th phase ends)  

j

n ( 3
4 )

j+1

n ( 3
4 )

j

2

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ cn(3/4)j ⋅ E(# j = 2cn(3/4)j

Expected Running Time



• Let  be the expected number of steps spent in phase 


•  be the total number of steps taken by the algorithm


•   of iterations until th phase ends   steps in phase 


•  iterations until th phase ends) 


• Now we can apply linearity of expectation:


•



 

Xj j

X = X0 + X1 + X2…

E(Xj) = E(# j ⋅ # j)

E(Xj) ≤ n(3/4)j ⋅ E(# j = 2cn(3/4)j

E[X] = ∑
j

E[Xj] ≤ ∑
j

2cn ( 3
4 )

j

= 2cn∑
j

( 3
4 )

j

= Θ(n)

Expected Running Time



• Deterministic and random both take  time


• What’s the advantage of the deterministic algorithm?


• Worst-case guarantee—the random algorithm could be very slow sometimes


• What’s the advantage of the random algorithm?


• Much much simpler and better constants hidden in 


• Which should you use?


• Pretty much always random


• Question to ask yourself: 


• how often is the randomized algorithm going to be much worse than ?

O(n)

O()

O(n)

Pivot Selection



Randomized Algorithm II 
Randomized QuickSort



• Recall deterministic Quicksort


• Depending on the choice pivot, could be 


• What if we pick the pivot uniformly at random?


• We saw in randomized selection that this leads to good pivots half of the time

O(n2)

Randomized Quicksort

Quicksort :

If  Sort  directly

Else: choose a pivot element  


Partition around 

Quicksort 

Quicksort

(A)
|A | < 3 : (A)

p ← A
A<p, A>p ← p

(A<p)
(A>p)



• Intuitively half the pivots will be good, half bad


• We will analyze quick sort using another accounting trick (see the textbook for 
example similar to selection’s approach of analyzing “phases”)


• Total work done can be split into to types: 


• Work done making recursive calls (this is a lower order term, it turns out)


• Work partitioning the elements


• How many recursive calls in the worst case? 


• Imagine worst pivot being chosen each time


•   O(n)

Randomized Quicksort



• We thus need to bound the work partitioning elements


• Partitioning an array of size  around a pivot  takes exactly  comparisons


• We won't look at partitions made in each recursive call, which depend on the 
choice of random pivot


• Idea: Instead, account for the total work done by the partition step by summing 
up the total number of comparisons made


• Two ways to count total comparisons:


• Look at the size of arrays across recursive calls and sum


• Look at all pairs of elements and count total # of times they are compared 
(this is easier to do in this case)

n p n − 1

Randomized Quicksort



• Often multiple ways to determine a randomized algorithm’s cost


• We can split into phases, or count the cost directly.  We can calculate 
each probability, or use linearity of expectation


• Intrinsically some “cleverness” involved in choosing the way that gets 
you a clean answer


• We’ll focus on problems where there’s a clear path to finding the solution 
(either it follows directly from the question, or we’ll revisit problems 
you’ve seen before). More complex problems abound if you look!


• That said, here’s a very clever way to calculate Quicksort’s running time

 Aside:  Randomized Analysis



• Just for analysis, let  denote the sorted version of input array 
, that is,  is the th smallest element in 


• Define random variable  as the number of times Quicksort 
compares  and  


• Observation:  or , why?


• ,  only compared when one of them is the current 
pivot; pivots are excluded from future recursive calls


•
Let  be the total number of comparisons made 

by randomized Quicksort

B
A B[i] i A

Xij
B[i] B[ j]

Xij = 0 Xij = 1

B[i] B[ j]

T =
n

∑
i=1

n

∑
j=i+1

Xij

Counting Total Comparisons



•
Goal:  


•   


• When is ? That is, when are  and  compared?


• Consider a particular recursive call. Let rank of pivot  be .


• Let's think about where  lie with respect to 

E[T] = E
n

∑
i=1

n

∑
j=i+1

Xij =
n

∑
i=1

n

∑
j=i+1

E[Xij]

E[Xij] = Pr[Xij = 1]

Xij = 1 B[i] B[ j]

p r

B[i], B[ j] p

Expected Running Time



•
Goal:  


•   


• When is ? That is, when are  and  compared?


• Consider a particular recursive call. Let rank of pivot  be .


• Case 1. One of them is the pivot:  or 


• Case 2. Pivot is between them:   and 


• Case 3. Both less than the pivot:  


• Case 4. Both greater than the pivot:  

E[T] = E
n

∑
i=1

n

∑
j=i+1

Xij =
n

∑
i=1

n

∑
j=i+1

E[Xij]

E[Xij] = Pr[Xij = 1]

Xij = 1 B[i] B[ j]

p r

r = i r = j

r > i r < j

r > i, j

r < i, j

Expected Running Time



• Case 1.  or 


•  and  are compared once and one of them is excluded from all future calls


• Case 2.  and 


•  and  are both compared to the pivot but not to each other, after which 
they are in different recursive calls: will never be compared again


• Case 3.  and Case 4. 


•  and  are not compared to each other, they are both in the same subarray 
and may be compared in the future


• Takeaway: ,  are compared for the 1st time when one of them is chosen as 
pivot from  & never again

r = i r = j

B[i] B[ j]

r > i r < j

B[i] B[ j]

r > i, j r < i, j

B[i] B[ j]

B[i] B[ j]
B[i], B[i + 1], …, B[ j]

Comparisons for Each Case



• (one of them is picked as pivot from 


•  


•
 

Pr[Xij = 1] = Pr B[i], B[i + 1], …, B[ j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

Expected Running Time



•  and  are compared iff one of them is the first pivot chosen from the 
range 


•  


•
  


•
For fixed , inner sum is 


• Thus, expected number of comparisons is: 
   

B[i] B[ j]
B[i], B[i + 1], …, B[ j]

Pr[Xij = 1] =
2

j − i + 1

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij] = 2
n

∑
i=1

n

∑
j=i+1

1
j − i + 1

i
1
2

+
1
3

+
1
4

+ …
1

n − i + 1
≤

n

∑
ℓ=2

1
ℓ

= O(log n)

E[T] = O(n log n)

Expected Running Time

At each round, the probability that  conditioned 
on the event that we are in Case 1 or Case 2.  

(In Cases 3 and 4, )

Xij = 1

Xij = 0



• Las Vegas algorithms like Quicksort and Selection are always correct and 
their running time guarantees hold in expectation 


• We can actually prove that the number of comparisons made by Quicksort is 
 with high probability

• W.H.P. means that the the probability that the running time of quicksort is 
more than a constant  factor away from its expectation is very small 
(polynomially small: less than  for )

• Whp bounds are called concentration bounds

• Whp: ideal guarantees possible for a randomized algorithm

O(n log n)

c
1/nc c ≥ 1

Quick Sort Summary
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