Randomized Quicksort

Randomized Algorithms & Data Structures

» Monte-Carlo algorithms
e [Find the correct answer most of the time

 (Can usually amplify probability of success with
repetitions

« Example, Karger's min cut (in textbook)

» Las-Vegas algorithms

* Always find the correct answer, e.g. RandQuick sort
(today!)

 But the worst-case running-time guarantees are not
strong (they hold in expectation or with high probability,
but their goodness depends on randomness)

 Randomized data structures: hashing, search trees, filters, etc.

Randomized Algorithm |
Randomized Selection

Randomized Selection

Problem. Find the kth smallest/largest element in an unsorted array

* Recall our selection algorithm from back in our divide and conquer unit (lecture 15);

Select (A, k):
f Al =1 return A[1]
-lse:

Choose a pivot p < All,...,n]; let r be the rank of p
r, A, Ay, < Partition((A, p)

fk==r retunp
“lseifk <r: Select (A, k)
“lse: Select (A, ,,k — 1)

Selection with a Good Pivot

 Recall: pivotis "good” If it reduced the array size by at least a constant

« Gives arecurrence T(n) < T(an) + O(n) for some constant a < 1

» Expands to a decreasing geometric series T(n) = O(n)
* |n the deterministic algorithm, how did we find a good pivot?
. Split array into groups of S
 And computed the median of group medians
» The pivot guaranteed thatn — 7n/10
 Here is a silly idea: What if we pick the pivot uniformly at random?
 Seems like the pivot is “usually”™ around the midpoint

 What is the expected running time”?

Randomized Selection

« Problem. Find the kth smallest/largest element in an unsorted array

* Recall our selection algorithm

Select (A, k):
f Al =1 return A[1]
-lse:

Choose a pivot p < Al l,..., n] uniformly at random; let r be the rank of p

v, A<p,A>p «— Partition((A, p)

fk==r retunp
“lseifk <r: Select (A, k)
“lse: Select (A, ,,k — 1)

Analyzing Randomized Selection

Normally, we'd write a recurrence relation for a recursive function

A bit complicated now—input si

random choices of pivots in ear

zes of later recursive calls depend on the

ler calls

We will use a different accounting trick for running time

Randomized selection makes at most one recursive call each time:

 Group multiple recursive call in “phases”

e Sum of work done by all calls is equal to the sum of the work done in all the

137 -9 e 42 13 W7l

phases

Analyzing in Phases

Idea: let a "phase” of the algorithm be the time it takes for the array size to drop by a
constant factor (say n — (3/4) - n)

It array shrinks by a constant factor in each phase and linear work is done in each
phase, what would be the running time”

T(n) = c(n+3n/4+ B/4)n+ ...+ 1) = On)
f we want a 1/4th, 3/4th split, what range should our pivot be in?
« Middle half of the array (if n size array, then pivot in [n/4,3n/4])
 What is the probability of picking such a pivot?

e 1/2
 Phase ends as soon as we pick a pivot in the middle half

« Expected # of recursive calls until phase ends? 2

Expected Running Time

et the algorithm be in phase j when the size of the array is

3\/*"! I\
, Atleastn (Z) but not greater that n (Z)

-xpected number of iterations within a phase: 2

Let X] be the expected number of steps spent in phase J

X =Xy+ X; + X,... be the total number of steps taken by the algorithm

E(X;) = E(# recursive calls until jth phase ends - # steps in phase j)

E(X;) < cn(3/4) - E(# recursive calls until jth phase ends) = 2cn(3/4Y

Expected Running Time

Let XJ be the expected number of steps spent in phase J

X =Xy + X; + X,... be the total number of steps taken by the algorithm

E(Xj) = E(# of iterations until jth phase ends - # steps in phase j)

E(X;) < n(3/4) - E(# iterations until jth phase ends) = 2cn(3/4)
Now we can apply linearity of expectation:
3\ 3\/

= O(n)

Pivot Selection

« Deterministic and random both take O(n) time
 What's the advantage of the deterministic algorithm?
* Worst-case guarantee—the random algorithm could be very slow sometimes
 What's the advantage of the random algorithm?
« Much much simpler and better constants hidden in O()

* Which should you use?

* Pretty much always random
* Question to ask yourself:

« how often is the randomized algorithm going to be much worse than O(n)?

Randomized Algorithm ||
Randomized QuickSort

Randomized Quicksort

e Recall deterministic Quicksort

. Depending on the choice pivot, could be O(n?)
 What if we pick the pivot uniformly at random?

 We saw in randomized selection that this leads to good pivots half of the time

Quicksort(A):
f |A] < 3 : Sort(A) directly
“Ise: choose a pivot element p «— A

A, A, < Partition around p

Quicksort(A<p)
Quicksort(A>p)

Randomized Quicksort

Intuitively half the pivots will be good, half bad

We will analyze quick sort using another accounting trick (see the textbook for
example similar to selection’s approach of analyzing “phases’)

Total work done can be split into to types:
 Work done making recursive calls (this is a lower order term, it turns out)

 Work partitioning the elements

ow many recursive calls in the worst case”

* |magine worst pivot being chosen each time

« O(n)

Randomized Quicksort

We thus need to bound the work partitioning elements

Partitioning an array of size n around a pivot p takes exactly n — 1 comparisons

We won't look at partitions made in each recursive call, which depend on the
choice of random pivot

Idea: Instead, account for the total work done by the partition step by summing
up the total number of comparisons made

Two ways to count total comparisons:

 Look at the size of arrays across recursive calls and sum

 Look at all pairs of elements and count total # of times they are compared
(this Iis easier to do In this case)

Aside: Randomized Analysis

Often multiple ways to determine a randomized algorithm’s cost

We can split into phases, or count the cost directly. We can calculate
each probability, or use linearity of expectation

Intrinsically some “cleverness” involved in choosing the way that gets
yYOou a clean answer

We'll focus on problems where there’'s a clear path to finding the solution
(either it follows directly from the question, or we'll revisit problems
you've seen before). More complex problems abound if you look!

That said, here's a very clever way to calculate Quicksort's running time

Counting Total Comparisons

Just for analysis, let B denote the sorted version of input array
A, that is, Bli] is the ith smallest element in A

Define random variable X;; as the number of times Quicksort

compares B|i] and B| /]
Observation: le = or le- = 1, why?

« BJi], B|j] only compared when one of them is the current
pIvot; pivots are excluded from future recursive calls

n n
Let ' = 2 2 X;j be the total number of comparisons made
i=1 j=i+1

by randomized Quicksort

Expected Running Time

Goal: E[T] =E zn: Zn: X;| = zn: Zn: E[X,]

i=1 j=i+1 i=1 j=i+1

E[X;] = Pr[X; = 1]

When is le = 1? That is, when are B|i] and B[j] compared?

Consider a particular recursive call. Let rank of pivot p be r.

« Let's think about where B|i], B|] lie with respect to p

Expected Running Time

Goal: E[T]=E Z Z X | = Z Z E[X,]

i=1 j=i+1 i=1 j=i+1
ElX;] = PrlX;; = 1]
When is Xl-j = 1? That is, when are B|i] and B[j] compared?
Consider a particular recursive call. Let rank of pivot p be r.
« Case 1. One of themisthe pivot: r =10rr =7
« Case 2. Pivot is betweenthem: r > 1andr <jJ

« Case 3. Both less than the pivot: > 1,

« Case 4. Both greater than the pivot: r <1,]

Comparisons for Each Case

e« Casel.r=1o0rr=j
« Bli] and B|j] are compared once and one of them is excluded from all future calls
e« Case2.r>1andr<j

« BJli] and B|j] are both compared to the pivot but not to each other, after which
they are in different recursive calls: will never be compared again

e« Case3.r>1,jandCased.r<1,]

« Bli] and B|j] are not compared to each other, they are both in the same subarray

and may be compared Iin the future

- Takeaway: B|i], B[] are compared for the 1st time when one of them is chosen as
pivot from Bli], Bli + 1], ..., B| j] & never again

Expected Running Time

. Pr[X;; = 1] = Pr(one of them is picked as pivot from B[i], Bli + 1], ..., B[]

B A oy

. E[T1=i iE[ij]zzi Zn: -_l-1+1

i=1 j=i+1 i=1 j=it+1”

Expected Running Time

Bli] and B[] are compared iff one of them is the first pivot chosen from the
range Bli],Bli + 1], ..., B|/J]

DrlX.. = 1] =
= j—i+1
n n n n 1
E|T]| = ElX:] =2 _—
M= 2L BX1=22 25
=1 j=i+1 =1 j=i+1
| o 1 1 1 | = 1
—or fixed 7, inner sumis — 4+ — +— 4+ < Z— = O(log n)
4 n—i+1 fzzf

Thus, expected number of comparisons Is:
E|T] = O(nlogn)

Quick Sort Summary

* [as Vegas algorithms like Quicksort and Selection are always correct and

their running time guarantees hold in expectation

 We can actually prove that the number of comparisons made by Quicksort is

O(nlog n) with high probability

« W.H.P. means that the the probability that the running time ot quicksort is

more than a constant ¢ factor away from its expectation is very small

(polynomially small: less than 1/n¢ forc > 1)
 Whp bounds are called concentration bounds

 Whp: ideal guarantees possible for a randomized algorithm

Acknowledgments

e Some of the material in these slides are taken from
* Shikha Singh

« Kleinberg Tardos Slides by Kevin Wayne (https://
Wwww.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
04GreedyAlgorithmsl. pdf)

« Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/teaching/
algorithms/book/Algorithms-JeffE . pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

