Introduction to Probability
|



Random Variable

An event elther does or does not happen.

magnitude of a probabilistic event?

But what If we want to capture the

e Suppose | flip n fair coins: the # of heads is a random variable

 Number that comes up when we roll a fair die is a random variable

e [fan algorithm’s behavior is determined by “flipping some coins” then the

running time of the algorithm is a random variable

 Definition. A random variable X is a function from a sample space S (with a
probability measure) to some value set (e.g. real numbers, integers, etc.)



Random Variable: Example

« Suppose, for example, | flip a coin 10 times. Let X be the number of heads

. Pr[X =0]=1/2! All 10 tlips are the same; only
combination of flips leads to event

. Pr[X=10]=1/210

e Pr[X =4]7 Many different combinations of H & T
10\ 1 1 105
Pr(X = 4] = =
° ( 4 ) 2426 512

« A random variable that is O or 1 (indicating if something happens or not) is

called an indicator random variable or Bernoulli random variable



Expectation

Every time you do the experiment, associated random variable
can take a different value

« How can we characterize the average behavior ot a random
variable?

* Alternate Definition. Expected value of a random
variable R defined on a sample space S is

EQR)= ) x-Pr(R=x)

X

To get the E to look good In latex,
use \mathrm{E}

* Let R be the number that comes up when we roll a fair, six-sided

die, then the expected value of R is

(We won't use It In the slides, but if you

6

1 1 7 "

ER)= Y i-—=—1+2+3+4+5+6) =— really want to, it’s \mathbb)
= 6 6 o)



Conditional Expectation

 Definition. If A is an arbitrary event with Pr[A] > 0, the conditional
expectation of X given A is

E[X|A]:= ) x-Pr[X =x|A]

X

o (Law of total expectation) If {A, A,, ...} is a finite partition of the sample
space:

EX) = ) EX|A)-Pr(A)

Very useful |



Linearity of Expectation

Very important tool In randomized algorithms

—Xpectation of random variables obey a wonderful rule

Informally, the expectation of a sum is the sum of the expectations.

~ormally, for any random variables X, X,, ..., X, and any coefficients
Ay Aoy .oy O,
n n
E[Z (a; - X))] = Z (a; - E[X}]) Very useful !
i=1 i=1

Note. Always true! Linearity of expectation does not require
independence of random variables.



Bernoulli Distribution

e SUPPOSE you run an experiment with probability of success p and
failure 1 — p

« Example, coin toss where head is success and Pr(H) = p

o Let X be aBernoulli or indicator random variable that is 1 if we
succeed, and 0O otherwise. Then,

E[X]= ) x-Pr[X=x]

=0-PrIX=0]4+1-PrlX=1]
=P
* Remember this: expectation of an indicator random variable is
exactly the probability of success!




Expected Success: n Bernoulli Trials

Consider n independent Bernoulli trials (with success probability p). Let
R denote the number of successes

* R is said to follow a Binomial distribution (we'll revisit this)

We want to know expected number of successes E(R)

Can write R as a sum of indicator random variables

~R= ZRiwhereRizOorRiz 1

Then E[R] =E | ) R, How can we simplify this by Lo




Expected Success: n Bernoulli Trials

Consider n independent Bernoulli trials (with success probability p). Let
R denote the number of successes

* R is said to follow a Binomial distribution (we'll revisit this)

We want to know expected number of successes E(R)

Can write R as a sum of indicator random variables

~R= ZRiwhereRizOorRiz 1

Then E[R] = E Z R, — Z E[R ] How can we simplify this?



Expected Success: n Bernoulli Trials

Consider n independent Bernoulli trials (with success probability p). Let
R denote the number of successes

* R is said to follow a Binomial distribution (we'll revisit this)

We want to know expected number of successes E(R)

Can write R as a sum of indicator random variables

~R= ZRiwhereRizOorRiz 1

Then E[R] = E ZRZ- = ZE[RZ.] = ipznp
i i i=1



Uniform Distribution

 With a uniform distribution, every outcome is equally likely
 Examples:

e fair coin toss (heads and tails are equally likely)

e fair die roll (all numbers are equally likely)

« Let X be the random variable of the experiment and S be the sample space

PrX = x] =
. PA=A=TY

E[X] = Zx-Pr(sz)z ‘;‘ -Zx

xXES xXES




Card Guessing: Memoryless

« [0 entertain your family you have them shuffle deck of n cards and
then turn over one card at a time. Before each card is turned, you
oredict its identity. Assume you have no psychic abilities or
memory to remember cards

* Your strategy: guess uniformly at random
* How many predictions do you expect to be correct?

« Let X denote the random variable equal to the # of correct guesses
and X, denote the indicator variable that the 1th guess is correct

Thus, X = in- and E[X] = E[iX,-] = i E[X;]
i=1 i=1 i=1

« E[X]=0-Pr(X.=0)+1-Pr(X.=1)=Pr(X:=1)=1/n
e Thus, E[X] =1




Card Guessing: Memoryful

* Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random among cards that have
not been turned over

« Let X denote the random variable equal to the # of correct guesses
and X, denote the indicator variable that the 1th guess is correct

Thus, X = iXi and E[X] = E[iXi] = i E[X;]
=1 =1 =1

. EX]=P(X,=1)= —— , .
n—i+1 After we've seen 1 cards, we /
i | '
Thus EIX]= Y — L - - yl can rule out those 1 cards
=1 PTETE a from our range of guesses

Qg



Harmonic Numbers

« The nt" harmonic number, denoted H, is defined as
n
1
H,= ) =
i=1

« Theorem. H, = O(log n)

 Proof |ldea. Upper and lower bound area under the curve

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8



Card Guessing: Memoryful

e Suppose we play the same game but now assume you have the
ability to remember cards that have already been turned

* Your strategy: guess uniformly at random among cards that
have not been turned over

« Let X denote the r.v. equal to the number of correct predictions
and X; denote the indicator variable that the ith guess is correct

Thus, X = iXi and E[X]| = E[iX,-] = iE[Xi]
i=1 i=1 i=1

E[X;] = Pr(X;= 1) =

) n—i+1
Thus, E[X] i : i : Olog n)
us, p— : p— — =
’ = n—I + 1 — I



Geometric Distribution

. Let’s say we do a sequence of Bernoulli trials X, X5, ... where X; where
each trial is successful (X; = 1) with probability p, and fails (X; = 0) with
probability 1 — p

 Question: what is the expected number of trials until the first success?

« In expectation, what is the value of the first i such that X; = 17

« E.g. number of coin flips until heads (p = 1/2)

 E.g. number if times | roll a die until | geta 1 (p = 1/6)

 One way to solve it is to just do the sum:

o0

D i(1—=p)y~'p

=1




Geometric Expectation (using the sum)

o0

Zz(l— p'p= ZZ(l— p'p=

=1 =1 k=1

ZZ(l— p)~'p = 2p<1— P 12(1_p)z_

k=1 i=k

1 B 0

N 1 — k—1
pr( p) T —»)

1
P

(1=p)'= ) (1-pf=
1 k=0

k=




Geometric Expectation (using the sum)

 Want to know, how many tries in expectation until first success

e |et'sthink about this recursively

FiIndNum-Tries:
1 with prob. p
fX =1
A < {() with prob. (1 — p) It we fail In the first try, we
Return 1 start over from scratch!
f X =0

Return 14+ FindNumTries

« Let F be the number returned by FindNumTries, what want E(F)



Geometric Expectation (using the sum)

« Let F be the number of times FindNumtries is called, what is E(F)?

« E(F)=EWF|X;,=1)-Pr(X;=1)+EWF|X;, =0) - Pr(X; =0)
=1+0)-p + (+EWF))-(1-p)

« E(F)=1/p

FiIndNumTries:

fX =1

Return 1

fX =0

Return 14+ FindNumTries




Coupon/Pokemon .ﬁ
Collector Problem L




Gotta' Catch 'Em All

Suppose there are n different types of Pokemon cards

In each trial we purchase a pack that contains a Pokemon card, where

« each of the n Pokemon are equally likely to be in a pack

We repeat until we have at least one of each type of card, how many

packs does it take In expectation to collect all?

Let X be the r.v. equal to the number of packs bought until you first have
a card of each type. Goal: compute E|X]

We break X into smaller random variables

Idea. we make progress every time we get a card we don't already have




Pokemon Collector Problem

« Let X; denote the "length of the 1th phase”, that is, the number of packs
oought during the ith phase (ith phase ends as soon as we see the ith
distinct card)

n
Thus, X = ) X,
1=1
P, P,P, P,P,P, P, ...P,
—_— — —_
Xl XZ X3 Xn

 Each phase can be though of as flipping a biased coin until we see a
nead, where seeing a head = getting a new card




Pokemon Collector Problem

 E1X:]is the expected number of coin flips until success (expectation of a
geometric r.v.)

Py PPy, PP P Py, ....,P,
—_—l — — —_—
Xl XZ X3 Xn

« We know, E[X;] = 1/p, where p; is the probability of success/ probability
of seeing a heads during a coin flip in the 1th phase

« Before the ith phase starts, we don't have n — i + 1 Pokemon

« Remember: each of the n Pokemon are equally likely to be in a pack




Pokemon Collector Problem

 E1X:] is the expected number of coin flips until success
(expectation of a geometric r.v.)

Py PPy, PP P Py, ....,P,
—_—l — — —_—
Xl XZ X3 Xn

« We know, E[X.| = 1/p; where p. is the probability of success/
probability of seeing a heads during a coin flip in the 1th phase

n—i+1

e D=
n




Pokemon Collector Problem

« We know, E[X.| = 1/p; where p. is the probability of success/
probability of seeing a heads during a coin flip in the 1th phase

Py PPy Py, P, Py P ...,P,
—: — — —
Xl Xz X3 Xn
= . - n—i+1
. E[X:] = Expected[number of flips until first heads] = 1/p; =
n

n

" E[X] = E[iXi] — Zn:E[Xl.] =) n_ril+ - = 2% — nH, = ©(nlog n)
=1 =1 =1

=1




Taking Stock...

 We've run through a lot of probability vocabulary and rules...
 We've applied some of those rules to answer “interesting” questions
* What's next?
* Analyzing previously-explored algorithms that have randomness

* Analyzing previously-explored data structures that have
randomness

* Using randomness to simplify the implementation of common
APls
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