
Introduction to Probability 
II



Random Variable
An event either does or does not happen. But what if we want to capture the 
magnitude of a probabilistic event?


• Suppose I flip  fair coins: the # of heads is a random variable


• Number that comes up when we roll a fair die is a random variable 


• If an algorithm’s behavior is determined by “flipping some coins” then the 
running time of the algorithm is a random variable


• Definition.  A random variable  is a function from a sample space  (with a 
probability measure) to some value set (e.g. real numbers, integers, etc.)
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Random Variable:  Example
• Suppose, for example, I flip a coin 10 times.  Let  be the number of heads


• 


• 


•  ?


• 


• A random variable that is  or  (indicating if something happens or not) is 
called an indicator random variable or Bernoulli random variable
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Pr[X = 0] = 1/210

Pr[X = 10] = 1/210

Pr[X = 4]

Pr[X = 4] = (10
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24
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All 10 flips are the same; only 
combination of flips leads to event

Many different combinations of H & T



Every time you do the experiment, associated random variable 
can take a different value


• How can we characterize the average behavior of a random 
variable?


• Alternate Definition.  Expected value of a random 
variable  defined on a sample space  is  


                   


• Let  be the number that comes up when we roll a fair, six-sided 
die, then the expected value of  is 
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E(R) = ∑
x

x ⋅ Pr(R = x)

R
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i ⋅
1
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(1 + 2 + 3 + 4 + 5 + 6) =
7
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Expectation

To get the E to look good in latex, 
use \mathrm{E} 

(We won’t use  in the slides, but if you 
really want to, it’s \mathbb)

𝔼



• Definition.  If  is an arbitrary event with , the conditional 
expectation of  given  is 


                   


• (Law of total expectation) If  is a finite partition of the sample 
space:


                  

A Pr[A] > 0
X A

E[X |A] := ∑
x

x ⋅ Pr[X = x |A]

{A1, A2, …}

E(X) = ∑
i

E(X |Ai) ⋅ Pr(Ai)

Conditional Expectation

Very useful !



• Very important tool in randomized algorithms 


• Expectation of random variables obey a wonderful rule


• Informally, the expectation of a sum is the sum of the expectations.


• Formally, for any random variables  and any coefficients 
  

 

 


• Note.  Always true!  Linearity of expectation does not require 
independence of random variables.

X1, X2, …, Xn
α1, α2, …, αn

E[
n

∑
i=1

(αi ⋅ Xi)] =
n

∑
i=1

(αi ⋅ E[Xi])

Linearity of Expectation

Very useful !



• Suppose you run an experiment with probability of success  and 
failure 


• Example, coin toss where head is success and 


• Let  be a Bernoulli or indicator random variable that is  if we 
succeed, and  otherwise. Then, 
 

 

          
          


• Remember this:  expectation of an indicator random variable is 
exactly the probability of success!

p
1 − p

Pr(H) = p

X 1
0

E[X] = ∑
x

x ⋅ Pr[X = x]

= 0 ⋅ Pr[X = 0] + 1 ⋅ Pr[X = 1]
= p

Bernoulli Distribution



• Consider  independent Bernoulli trials (with success probability ).  Let 
 denote the number of successes 


•  is said to follow a Binomial distribution (we'll revisit this)

• We want to know expected number of successes 


• Can write  as a sum of indicator random variables


•
 where  or 


•
Then 
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R = ∑
i

Ri Ri = 0 Ri = 1

E[R] = E [∑
i

Ri]

Expected Success:  Bernoulli Trialsn

How can we simplify this by LoE?



• Consider  independent Bernoulli trials (with success probability ).  Let 
 denote the number of successes 


•  is said to follow a Binomial distribution (we'll revisit this)

• We want to know expected number of successes 


• Can write  as a sum of indicator random variables


•
 where  or 


•
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E[Ri] How can we simplify this?



• Consider  independent Bernoulli trials (with success probability ).  Let 
 denote the number of successes 


•  is said to follow a Binomial distribution (we'll revisit this)

• We want to know expected number of successes 


• Can write  as a sum of indicator random variables


•
 where  or 


•
Then 

n p
R

R
E(R)

R

R = ∑
i

Ri Ri = 0 Ri = 1

E[R] = E [∑
i

Ri]

Expected Success:  Bernoulli Trialsn

= ∑
i

E[Ri] =
n

∑
i=1

p = np



• With a uniform distribution, every outcome is equally likely


• Examples: 

• fair coin toss (heads and tails are equally likely)


• fair die roll (all numbers are equally likely)


• Let  be the random variable of the experiment and  be the sample space 


•  


•

X S

Pr[X = x] =
1

|S |

E[X] = ∑
x∈S

x ⋅ Pr(X = x) =
1

|S |
⋅ ∑

x∈S

x

Uniform Distribution



• To entertain your family you have them shuffle deck of  cards and 
then turn over one card at a time. Before each card is turned, you 
predict its identity. Assume you have no psychic abilities or 
memory to remember cards


• Your strategy: guess uniformly at random


• How many predictions do you expect to be correct?


• Let  denote the random variable equal to the # of correct guesses 
and  denote the indicator variable that the th guess is correct


•
Thus,   and  


• 


• Thus, 

n

X
Xi i

X =
n

∑
i=1

Xi E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi]

E[Xi] = 0 ⋅ Pr(Xi = 0) + 1 ⋅ Pr(Xi = 1) = Pr(Xi = 1) = 1/n

E[X] = 1

Card Guessing: Memoryless



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned


• Your strategy: guess uniformly at random among cards that have 
not been turned over


• Let  denote the random variable equal to the # of correct guesses 
and  denote the indicator variable that the th guess is correct


•
Thus,   and  


•  


•
Thus,  
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E[Xi] = Pr(Xi = 1) =
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n − i + 1

E[X] =
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i=1

1
n − i + 1

=
n

∑
i=1

1
i

Card Guessing: Memoryful

After we’ve seen  cards, we 
can rule out those  cards 
from our range of guesses

i
i



• The th harmonic number, denoted  is defined as 




• Theorem.  


• Proof Idea. Upper and lower bound area under the curve 

n Hn

Hn =
n

∑
i=1

1
i

Hn = Θ(log n)

Harmonic Numbers



• Suppose we play the same game but now assume you have the 
ability to remember cards that have already been turned


• Your strategy: guess uniformly at random among cards that 
have not been turned over


• Let  denote the r.v. equal to the number of correct predictions 
and  denote the indicator variable that the th guess is correct
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• Let’s say we do a sequence of Bernoulli trials  where  where 
each trial is successful ( ) with probability , and fails (  ) with 
probability 


• Question:  what is the expected number of trials until the first success?


• In expectation, what is the value of the first  such that ?


• E.g. number of coin flips until heads 


• E.g. number if times I roll a die until I get a 1 


• One way to solve it is to just do the sum:


•

X1, X2, … Xi
Xi = 1 p Xi = 0

1 − p

i Xi = 1

(p = 1/2)

(p = 1/6)

∞

∑
i=1

i(1 − p)i−1p

Geometric Distribution









∞

∑
i=1

i(1 − p)i−1p =
∞

∑
i=1

i

∑
k=1

(1 − p)i−1p =

∞

∑
k=1

∞

∑
i=k

(1 − p)i−1p =
∞

∑
k=1

p(1 − p)k−1
∞

∑
i=0

(1 − p)i =

∞

∑
k=1

p(1 − p)k−1 1
1 − (1 − p)

=
∞

∑
k=1

(1 − p)k−1 =
∞

∑
k=0

(1 − p)k =
1
p

Geometric Expectation (using the sum)



• Want to know, how many tries in expectation until first success


• Let’s think about this recursively





•   Let  be the number returned by FindNumTries, what want 

X ← {1 with prob. p
0 with prob. (1 − p)

F E(F)

Geometric Expectation (using the sum)

FindNumTries:


If 


     Return 


If 


      Return  FindNumTries

X = 1

1

X = 0

1+

If we fail in the first try, we 
start over from scratch!



• Let  be the number of times FindNumtries is called, what is ?


•  


             


•

F E(F)

E(F) = E(F |X1 = 1) ⋅ Pr(X1 = 1) + E(F |X1 = 0) ⋅ Pr(X1 = 0)

= (1 + 0) ⋅ p + (1 + E(F)) ⋅ (1 − p)

E(F) = 1/p

Geometric Expectation (using the sum)

FindNumTries:


If 


     Return 


If 


      Return  FindNumTries

X = 1

1

X = 0

1+



Coupon/Pokemon 
Collector Problem 



Gotta' Catch 'Em All
• Suppose there are  different types of Pokemon cards


• In each trial we purchase a pack that contains a Pokemon card, where


• each of the  Pokemon are equally likely to be in a pack


• We repeat until we have at least one of each type of card, how many 
packs does it take in expectation to collect all?


• Let  be the r.v. equal to the number of packs bought until you first have 
a card of each type.  Goal: compute  


• We break  into smaller random variables


• Idea: we make progress every time we get a card we don’t already have

n

n

X
E[X]

X



Pokemon Collector Problem
• Let  denote the "length of the th phase", that is, the number of packs 

bought during the th phase ( th phase ends as soon as we see the th 
distinct card)


•
Thus, 


• Each phase can be though of as flipping a biased coin until we see a 
head, where seeing a head = getting a new card

Xi i
i i i

X =
n

∑
1=1

Xi

…
P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn



•  is the expected number of coin flips until success (expectation of a 
geometric r.v.) 
 
 
 
 
 

• We know,  where  is the probability of success/ probability 
of seeing a heads during a coin flip in the th phase


• Before the th phase starts, we don't have  Pokemon


• Remember: each of the  Pokemon are equally likely to be in a pack

E[Xi]

E[Xi] = 1/pi pi
i

i n − i + 1

n

P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn

Pokemon Collector Problem



•  is the expected number of coin flips until success 
(expectation of a geometric r.v.) 
 
 
 
 
 

• We know,  where  is the probability of success/ 
probability of seeing a heads during a coin flip in the th phase


•

E[Xi]

E[Xi] = 1/pi pi
i

pi =
n − i + 1

n

Pokemon Collector Problem

P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn



• We know,  where  is the probability of success/ 
probability of seeing a heads during a coin flip in the th phase 
 
 
 
 
 

•  


•  

E[Xi] = 1/pi pi
i

E[Xi] = Expected[number of flips until first heads] = 1/pi =
n − i + 1

n

E[X] = E[
n

∑
i=1

Xi] =
n

∑
i=1

E[Xi] =
n

∑
i=1

n
n − i + 1

=
n

∑
i=1

n
i

= nHn = Θ(n log n)

Pokemon Collector Problem

P1 P1, P2 P2, P2, P3 P1, …, Pn

X1 X2 X3 Xn



• We’ve run through a lot of probability vocabulary and rules…


• We’ve applied some of those rules to answer “interesting” questions


• What’s next?


• Analyzing previously-explored algorithms that have randomness


• Analyzing previously-explored data structures that have 
randomness


• Using randomness to simplify the implementation of common 
APIs

Taking Stock…
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