Introduction to Probability



Why Randomness

Randomization. We allow a fair coin flip in unit time.

Why randomize??

* Deterministic algorithms offer little flexibility

 Randomness often enables to surprisingly simple & fast algorithms

Very important in computer science:

* Symmetry-breaking protocols, memory management, learr

iIng algorithms,

contention resolution, hashing, load balancing, cryptograp
theory

Gives insight in “real world” issues

* Polling, risk assessment, scientific testing, gambling, etc.

Ny, Al, game



Probability Review

 Before we design/analyze randomized algorithms, we need a foundation in probability
 Plan: we'll start with some things you've likely seen before

 Will be a “review" of probability from Discrete Math

e Since each Math 200 ditters, ensure everyone has same background
 Will move on to randomized algorithms and data structures:

* Randomized Quicksort

* Hashing

o SKip lists

* Fingerprinting

* efc.



“Deathbed” Formulas

You should remember these even on your deathbed [MAB]

Extremely useful in probability
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Discrete Probability Review

Sample Space

A discrete probability space consists of a non-empty, countable set €2,
called the sample space, and a probability mass function Pr : £ — R s.t.

Plw] >0 Vo €Q, and ZPr[a)]:l

we
* |dea: the sample space consists of all possible outcomes
« When flipping a coin, the sample space is 2 = {heads, tails}
» When rolling a six-sided die, 2 = {1,2,3,4,5,6}

* |f you're stuck on a probability guestion, sometimes it may help to list
all possible outcomes!




Discrete Probability Review

e An event s a set of outcomes

 E.g. Seeing a heads when we toss a fair coin

* E.g. Seeing a six when we roll a fair die

* Probability of an event is the weight of all outcomes satisftying that
event

o A fair coin: Pr|heads] = Pr|tails] = 1/2

o A fair six-sided die: Prlw] =1/6 Vw € Q




Four Step Method

Step 1. Find the sample space

Step 2. Define events of interest

Step 3. Determine outcome probabilities

Step 4. Determine event probabilities

When it comes to probability:
Intuition: Bad

Formalism: Good




Example: Baby Sex Likelihood

. Let's say every baby born is a girl or a boy with probability 1/2 each

e |f someone has four children, is it more likely that they have two girls
and two boys”? Or three of one, and one of the other?

* First: what is the sample space/how many outcomes do we have
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Example

* [f someone has four children, is it more likely that they have two girls and two
boys”? Or three of one, and one of the other?

o Pr[three same sex out of four] = 8/16 = 1/2

BBBG BGGG GGGG GBBG
GGGB BBBB BGGB
GGBG GGBB BGBG

GBGG GBGB BBGG

BBGB
BGBB
GBBB



Example

* [f someone has four children, is it more likely that they have two girls and two
boys”? Or three of one, and one of the other?

o Pr[two boys and two girls] = 6/16 =3/8 < 1/2

BBBG BGGG GGGG GBBG
BBGB GGGB BBBB BGGB

BGBB GGBG BGBG
GBBB  GBGG BBGG



Same Example: Let's Do the Math

Let’s say every baby is a girl or a boy with probability 1/2 each

It someone has four children, is it more likely that they have two girls and two

boys” Or three of one, and one of the other?

2% outcomes, each outcome occurs with equal probability: 1/2% = 1/16

4
(1> = 4. 4 ways to have one girl; 4 ways to have one boy; total = 8/16

4
<2> = 6 ways to have two girls and two boys; total = 6/16



Independence

Intuition: two events are independent If they do not affect each other

event that the second Is a head, are independent.

Not-independent example: Say | flip a coin 10 times, then let:

* Event 1: Flips 1, 2, and 3 are all heads

e Event 2: Flips 2, 3, and 4 are all heads

These are not independent. It
s false, Event 2 is less likely.

—vent 1 1S true,

—vent 2 is more likely. |f

—xample: let's say | flip two coins: the event that the first is a head, and the

—vent T



Independent Probabilities

Definition of independence:

« A and B are independent events if and only if:
Pr|A and B] = Pr[A] - Pr|B]

Here A and B = A N B (events are just subsets of the outcome space)

Probability of flipping 10 heads in a row is 1/21°

Probability of flipping a heads, and then rolling a 1 on a die, is 1/12




Conditional Probability S

What is the probability that it will rain this afternoon, given
that it is cloudy this morning?

Conditional probability is the probability that one
event happens, given that some other event
definitely happens or has already happened

Notation. Pr(A | B) denotes the probability that
event A happens given that event B happens

Pr[A] is the fraction of S that is red

Conditional Probability (Def):
Pr[A | B] captures weight of A that is purple

PrfA and B]  Pr[An B]

(overlaps with B) normalized over B PrlA|B] = Pr(B] ~ Pr[B]




Conditional Probability

* Definition of conditional probability:
Pr[A and B]

Pr[A | B] = oriB

 (Product rule). This means that
Pr[A and B] = Pr[A | B] - Pr|[B]

« We know for independent events A and B that
Pr|A and B] = Pr|A] - Pr|B]

« Means that A and B are independent if and only if
Pr[A | B] = Pr[A]



Monty Hall Problem

e "Suppose you're on a game show, and you're given the choice of three doors. Behind one door Is
a car, behind the others, goats.You pick a door, say number |, and the host, who knows what's
behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you
want to pick door number 277 Is it to your advantage to switch your choice of doors?"

--- Cralg. F. Whitaker Columbia, MD




Clarifying the Problem

The car is equally likely to be hidden behind any of the 3 doors
The player is equally to pick any of the 3 doors, regardless of the car's location

After the player picks a door, the host must open a different door with a goat
behind it and offer the choice to switch

It the host has a choice of which door to open, he is equally likely to select
each of them
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Find the Sample Space

Sample space: set of all possible outcomes

Here, an outcome involves 3 things:

door concealing the car

door initially chosen by the player

door that host opens to reveal a goat

Every possible combination of this is an outcome

We can visualize these as a tree diagram

Sample space S is then:
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Define Events of Interest

Question. What is the probabllity that /

Model as an event (subset of the sample space)

—vent that player wins by switching:

e {(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A)} aver door
ayers revealed outcome
initial
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To determine probability, assign edge probabilities

 Edge probabilities are conditional on previous parts of tree!

Determine Outcome Probabilities

—ach outcome Is not equally likely!
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-

 We now have a probability of each outcome

* Probability of an event is the sum of the probabillities of the
outcomes it contains, i.e., Pr(E) = Z Pr(x)

. Pr(switching wins) =

e |tIs better to switch!

Compute Event Probabilities
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 Jakeaway: resist the intuitively appealing answer
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The Birthday Paradox

Suppose that there are m students in a lecture hall

Assume for each student, any of the n = 365 possible days
are equally likely as their birthday

Assume birthday are mutually independent

Question. What is the likelihood that no two students have
the same birthday?

_et A, be the event that the ith persons birthday is different
from the previous i — 1 people

Pr (all m different birthdays)
= Pr(Al ﬂA2 N ... ﬂAm)




The Birthday Paradox

o Pr (all m different birthdays)

(D)0 (-5

. m—1
~I1(1-7) <o m e
n/
J=1

J=1

« M X \/Zn In 2 for probability to be 1/2

e Forn = 365, we get m = 22.49

 Thus, with around 23 people in this class, we have a 50% Death-bed Inequality:

chance of two people having the same birthday (1=x)< (l) forx > 1
(4



Birthday problem

From Wikipedia, the free encyclopedia

For yearly variation in mortality rates, see birthday effect. For the mathematical brain teaser that was asked in the Math Olympiad, see Cheryl's Birthday.

In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of n randomly chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of people reaches 367 (since there are only 366 possible birthdays, including February 29). However, 99.9% probability
Is reached with just 70 people, and 50% probability with 23 people. These conclusions are based on the assumption that each day of the year (excluding February 29) is equally probable

for a birthday.

Actual birth records show that different numbers of people are born on different days. In this case, it can be shown that the number of people required to reach the 50% threshold is 23 or
fewer.!'l For example, if half the people were born on one day and the other half on another day, then any two people would have a 50% chance of sharing a birthday.

It may well seem surprising that a group of just 23 individuals is required to reach a probability of 50% that at least two individuals in the group have the same birthday: this result is perhaps
made more plausible by considering that the comparisons of birthday will actually be made between every possible pair of individuals = 23 x 22/2 = 253 comparisons, which is well over half
the number of days in a year (183 at most), as opposed to fixing on one individual and comparing his or her birthday to everyone else's. The birthday problem is not a "paradox" in the literal
logical sense of being self-contradictory, but is merely unintuitive at first glance.

Real-world applications for the birthday problem include a cryptographic attack called the birthday attack, which uses this probabilistic model to reduce the complexity of finding a collision
for a hash function, as well as calculating the approximate risk of a hash collision existing within the hashes of a given size of population.

Source: Wikipedia
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