NP Hardness Reductions

Overview So Far

We have defined classes P and NP

We have some notion of NP hardness and NP completeness

We said a problem X is NP-hard=if X € P t

« Alternate definition: every problem in N

A problem X is NP-complete if it is NP-hard and in NP

NP hard
NP

" NP complete

nen P = NP

P poly-time reduces to it

We will define these
reductions today

Focus on decision
problems

Overview

We have defined classes P and NP
We have some notion of NP hardness and NP completeness
We said a problem X is NP-hard = if X € P then P = NP
« Alternate definition: every problem in NP poly-time reduces to it
A problem X is NP-complete if it is NP-hard and in NP
(Cook-Levin). 3SAT/SAT is NP hard
Today: Problem reductions!

e Strategy to prove a problem is NP hard: Reduce a known NP hard
problem to it

Will do a bunch of reductions next few days

Relative Hardness

How do we compare the relative hardness of problems?
Recurring idea In this class: reductions!

Informally, we say a problem X reduces to a problem Y, if can use an
algorithm for Y to solve X

 E.g., Bipartite matching reduces to max flow

Intuitively, if problem X reduces to problem Y,
then solving X is no harder than solving Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to
decision problem Y if given any instance x of X, we can construct an
instance y of Y in polynomial time s.t x € X ifandonlyify € Y.

Notation. X Sp Y

« Solving X is no harder than solving Y: if we have an algorithm for
Y, we can use it + a polynomial-time reduction to solve X

Yes

Yes

Instance of X Instance of Y

—————— Poly time
X

Algorithm for Y

Algorithm for X

Reductions Quiz

Say X Sp Y. Which of the following can we infer?

« |f X can be solved in polynomial time, then so can Y.

X can be solved in poly time iff Y can be solved in poly time.

If X cannot be solved in polynomial time, then neither can Y.

If Y cannot be solved in polynomial time, then neither can X.

Yes

Yes

Instance of X Instance of Y

—————— Poly time
X

Algorithm for Y

Algorithm for X

Reductions Quiz

Say X Sp Y. Which of the following can we infer?

« If X can be solved in polynomial time, then so can Y.
« X can be solved in poly time iff ¥ can be solved in poly time.
@ If X cannot be solved in polynomial time, then neither can Y.

« If Y cannot be solved in polynomial time, then neither can X.

Yes

Yes

Instance of X Instance of Y

—————— Poly time
X

Algorithm for Y

Algorithm for X

Digging Deeper

* Graph 2-Color reduces to Graph 3-color
* We'll see this soon
* Graph 2-Color can be solved in polynomial time
e How?
« Can decide if a graph is bipartite in O(n + m) time using BFS

* Graph 3-color (we'll show) is NP hard and unlikely to have a
polynomial-time solution

Intuitively, if problem X reduces to problem Y,
then solving X is no harder than solving Y

Use of Reductions: X sp Y

Design algorithms:

« If Y can be solved in polynomial time, we know X can also be
solved in polynomial time

Establish intractability:

« If we know that X is known to be impossible/hard to solve in
polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:
. IfX <, Yand Y <, X then X can be solved in poly-time iff Y can

be solved in poly time and we use the notation X =, Y

NP hard: Operational Definition

* New definition of NP hard using reductions.

« A problem Y is NP hard, if for any problem X € NP, X <, Y

o Recall we said Yis NP hard if Y € P, then P = NP.

Solving X'is no harder
than solving Y

e Lets show that both definitions are equivalent

» (=) every problem in NP reduces to Y in poly-time, and if Y € P,
then P = NP

« (<) Suppose Y € P, then P = NP: which means every problem
in NP(= P) reducesto Y

Proving NP Hardness

« To prove problem Y is NP-hard
« Difficult to prove every problem in NP reduces to Y
 Instead, we use a known-NP-hard problem Z

« We know every problem X in NP, X <, /
« Notice that Sp s transitive

« Thus, enough to prove Z <, Y

TO PROVE THAT A PROBLEM Y IS NP HARD,
REDUCE A KNOWN NP HARD PROBLEM Z 10 Y

Known NP Hard Problems?

For now: SAT (and a restricted version, 3SAT) (Cook-Levin Theorem)

We will prove a whole repertoire of NP hard and NP complete
problems by using reductions

Before reducing 3SAT to other problems to prove them NP hard, let us
review some easier reductions first (from our activit)

TO PROVE THAT A PROBLEM Y IS NP HARD,
REDUCE A KNOWN NP HARD PROBLEM Z 10 Y

VERTEX-COVER =, IND-SET

IND-SET

Given a graph G = (V, E), an independent set is a subset of vertices
S C V such that no two of them are adjacent, that is, for any x,y € §,

(x,y) € E
 What is the decision version of the IND-SET problem?

 IND-SET decision Problem. Given a graph G = (V, E) and an integer
k, does G have an independent set of size at least k?

@ O

()

@ 6 (O

Q ‘ independent set of size 6

Vertex-Cover

Given a graph G = (V, E), a vertex cover is a subset of vertices T C V
such that for every edge e = (u,v) € E, eitheru € Torv € T.
 What is the decision version of the VERTEX_COVER problem?

« VERTEX-COVER decision Problem. Given a graph G = (V, E) and an
integer k, does G have a vertex cover of size at most k?

@ 6 (O

O

Q vertex cover of size 4

Q ‘ independent set of size 6

Our First Reduction

VERTEX-COVER <, IND-SET

e Suppose we know how to solve independent set, can we use it
to solve vertex cover?

Claim. S is anindependent set of size kiff V — § is a vertex cover of
sizen — k.

Proof. (=) Consider anedge e = (u,v) € E
« Sisindependent: u, v both cannot be in §
e Atleastoneofu,ve V-39S

e V—Scoverse

Our First Reduction

VERTEX-COVER <, IND-SET

e Suppose we know how to solve independent set, can we use it
to solve vertex cover?

Claim. S is anindependent set of size kiff V — § is a vertex cover of
sizen — k.

Proof. (<) Consider anedge e = (u,v) € E

« V —Sisavertex cover: atleastone of u,v mustbein V- 39§

o Both u,v cannotbein$

e Thus, S is an independent set. K

Vertex Cover =, IND Set

VERTEX-COVER <, IND-SET
Reduction. LetG' =G, kK'=n—k.

« (=) If G has a vertex cover of size at most k then G" has an
independent set of size at least k'

« (<) If G'has an independent set of size at least k' then G has a
vertex cover of size at most k

IND-SET <, VERTEX-COVER

« Same reductionworks: G'=G, k'=n—k

VERTEX-COVER =, IND-SET

VERTEX-COVER <, SET-COVER

Set Cover

Set-Cover. Given a set U of elements, a collection & of subsets of U and
an integer k, is there some collection of at most k subsets S, ..., S,

whose union covers U, thatis, U C Ule S

U={1,2,3,4,5,6,7}
- S,={3,7} S,={2,4}
(5.={3,4,5,6) S;={5}

S.={1) S;= {1,2,6,7)

a set cover instance

Vertex Cover Sp Set Cover

« Theorem. VERTEX-COVER <, SET-COVER

. Proof. Given instance (G, k) of vertex cover, construct an instance
(U, S, k') of set cover problem such that

G has a vertex cover of size at most k if and only if (U, &, k") has a
set cover of size at most k.

Instance of Instance of Yes Yes

VertexCover (G, k) SetCover (G', k')
—— 5 Polytime

Algorithm for SetCover

Algorithm for VertexCover

Vertex Cover Sp Set Cover

« Theorem. VERTEX-COVER <, SET-COVER

. Proof. Given instance (G, k) of vertex cover, construct an instance
(U, 8, k) of set cover problem that has a set cover of size k iff G has
a vertex cover of size k.

e Reduction. U = E, foreachnodev € V, let
S, = {e € E | eincident to v}

(@) O,

€ € e, G U=1e,¢6 er}
S,=1e3,e7} S, =16, e4}
‘ (©)
@ 0 S.={eseqes5,6} S;={es}
€1 €s Se={€1} Sf—{el 626667}
vertex cover instance set cover instance

(k = 2) (k = 2)

Correctness

« Claim. (=) If G has a vertex cover of size at most k, then U can be
covered using at most k subsets.

e Proof. Let X C V be a vertex cover in G

« Then, Y= {S, | v € X} is a set cover of U of the same size

€7 () e €4 ; U - { el’ 627 ’ 87}
- Sy=1e367; Sp =1 €2, €4}
e ©®
0 0 (Scz{e3,e4,85,e6} S;={es}
€ €s : Se = { €1 } CSf = { €1, €9, €, 67}
vertex cover instance set cover instance

(k = 2) (k = 2)

Correctness

e Claim. (<) If U can be covered using at most k subsets then G
has a vertex cover of size at most k.

e Proof.Let Y C & be a set cover of size k

« Then, X ={v | S, € Y} isavertex cover of size k

€7 () e €4 ; U - { el’ 627 ’ 87}
- Sy=1e367; Sp =1 €2, €4}
e ©®
0 0 (Scz{e3,e4,85,e6} S;={es}
€ €s : Se = { €1 } CSf = { €1, €9, €, 67}
vertex cover instance set cover instance

(k = 2) (k = 2)

Class Exercise
IND-SET <, Clique

Clique

A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A k-clique is a clique that
contains k nodes.

e CLIQUE. Given a graph G and a number k, does G contain a k
-clique”

Clique

A clique in an undirected graph is a subset of nodes such that every
two nodes are connected by an edge. A k-clique is a clique that
contains k nodes.

e CLIQUE. Given a graph G and a number k, does G contain a k
-clique”

e CLIQUE & NP
e (ertificate: a subset of vertices

» Poly-time verifier: check is each pair of vertices have an edge
between them and if size of subset is k

IND-SET to CLIQUE

« Theorem. IND-SET <, CLIQUE.

* Inclass exercise. Reduce IND-SET to Clique. Given instance (G, k) of
independent set, construct an instance {(G’, k") of clique such that

« G has independent set of size k iff G' has clique of size k’

Yes Yes

Instance of Instance of

IND-SET (G, k) Poly fime CLIQUE (G’, k")

Algorithm for CLIQUE

Algorithm for IND-SET

IND-SET to CLIQUE

Theorem. IND-SET <, CLIQUE.

Proof. Given instance (G, k) of independent set, we construct
an instance (G’, k') of clique such that G has independent set
of size k iff G’ has clique of size k’

Reduction.
e LetG'=(V,E), wheree = (u,v) € Eiffe € Eandk’' =k

« (=) G has anindependent set S of size k, then § is a
clique in G’

« (<) G'hasaclique Q of size k, then Q is an independent
setin G

Reductions: General Pattern

e Describe a polynomial-time algorithm to transtform an arbitrary

instance x of Problem X into a special instance y of Problem Y
* Prove that:

« If xisa “yes” instance of X, then y is a “yes” instance of ¥

« Ifyisa “yes” instance of Y, then x is a “yes” instance of X

< if xis a "'no" instance of X, then y is a "no" instance of Y

Yes Yes

Instance of X Instance of Y

——————————— Poly time
X

Algorithm for Y
Algorithm for X

Reductions: General Pattern

e Describe a polynomial-time algorithm to transtform an arbitrary

instance x of Problem X into a special instance y of Problem Y
e Notice that correctness of reductions are not symmetric:
« the “if” proof needs to handle arbitrary instances of X

« the “only if” needs to handle the special instance of Y

Yes

Yes

Instance of X Instance of Y

——————————— Poly time
X

Algorithm for Y
Algorithm for X

Acknowledgments

e Some of the material in these slides are taken from

e Kleinberg Tardos Slides by Kevin Wayne (https://
WWW.CS.princeton.edu/~wayne/kleinberg-tardos/pdt/

04GreedyAlgorithmsl.pdf)

» Jeff Erickson’s Algorithms Book (http://jeffe.cs.illinois.edu/
teaching/algorithms/book/Algorithms-JeffE. pdf)

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf

